摘要:声频定向扬声器具有广阔的应用空间,基于对研究超声波定向声频的发射原理的研究,设计出超声波微型定向扬声器,并对样机进行了实践测试,声音指向性良好,在实际应用中的价值较高。
加入收藏
声波定向扬声器具有非常广阔的应用前景,既可用于商业领域,利用其定向辐射特性,在大型综合商场、博物馆等展厅、机场候机厅、广告牌和广场舞等恶劣声学环境中,达到提高语言清晰度和减少声污染等功能。也可用于反恐防暴,使用较高强度的声波定向扬声器对人群发送一束声波,让其难受而退,且不造成人身伤害,若加大声波的功率则可用于军事,使敌人丧失行动能力[1]。
1、定向声波的原理
使用超声波扬声器来加强指向性,其原理是利用超声波的强指向性来实现定向声波传播的目的。超声波因为频率较高,波长较短,不容易发生衍射,指向角较小,拥有较好的指向性,而可听声波的频率较低,波长较长,容易发生衍射,从而绕过传播过程中的障碍[2]。利用超声波的强指向性,超声波扬声器将超声波作为载波信号,再将音频信号调制到超声波中实现在空气中的定向传输,并最终在空气中实现自解调,即可使人耳能够听到被还原的音频信号。
2、超声波微型定向扬声器设计方案
2.1 超声波微型定向扬声器的整体设计
声频定向系统主要包括四个核心部件:控制器、调制器、放大器和发声模块。音源采用数字音频输入,以适应多媒体便携式设备接口。调制器使用NE555芯片作为产生高频信号的核心,谐振频率为使得扬声器器输出最大声功率,既能有效控制自解调信号的失真,又能让自解调信号的传输足够远,谐振频率控制在超声载波频段30kHz~70kHz之间。发声模块采用了压电陶瓷单元阵列来增大声输出功率,增强指向性,解决单个压电陶瓷元件的不足,因此对电源的要求较高,使用36V直流电源供电。
2.2 系统各模块的设计
2.2.1 控制芯片
主控采用STM32F系列中的低功耗芯片为基础,可以实现基本功能的前提下减少功耗来延长使用时间[3]。为了优化使用体验,增加扬声器的功能,控制单元采用了一块基于Blue-tooth5.0的组件,如图1所示,可以连接智能设备实现信号的传输和语音控制、红外遥控、sd卡和usb输入功能。
2.2.2 调制与功放模块
超声波微型定向扬声器的音源支持数字音频输入,以适应多媒体便携式设备接口。数字音频可直接进入信号处理环节,不需任何转换,减轻了处理器转换信号和数字滤波所带来的负担,使处理器能够更高效的处理声频定向算法[4]。信号采集模块采用的是AUX数字信号输入,此接口可以兼容大部分的设备,并且可以减少信号的失真。由于发声模块是多个单元组成的阵列,需要更大的功率推动,所以采用了两颗LM675T组成的25W的功放模块,并配合NE555为核心的调制组件,实现信号的调制和放大[5],如图2所示。
图1蓝牙接收模块;图2调制与功放模块
2.2.3 发声模块
发声模块采用的陶瓷压电元件在施加压力的时候会放出电流,反之在给它施加电流的时候会震动,并且震动的频率和对其施加的电流频率相同,所以可以发出超声波;但是单个的元件很小,难以发出响度较大的声音,所以要多个组成阵列[6,7],如图3所示。设计中注意放大器与压电陶瓷组件的最佳阻抗匹配,可将功率最大化地施加到发声模块上。
图3压电陶瓷发声阵列;图4外观效果
2.3 扬声器软件设计
超声波微型定向扬声器软件工作流程主要包括:初始化各部件;采集数字音频信号;低频提升均衡滤波处理;输出到相应的通道;根据算法,处理器将数据进行信号脉冲调制处理,最后输出至功率放大器。
2.4 扬声器外观设计
考虑到便携性和耐久性问题,外壳包装采用了聚甲基丙烯酸甲酯可塑性高分子材料,外观效果如图4所示。3结论根据声频定向的工作原理,设计并制作了可用于多种设备的超声波微型定向扬声器,具体包括信号处理、功率放大、用压电陶瓷超声波扬声器阵列作为发声部件等,实现可听声音的定向传播。通过对样机的实际测试,声音指向性明显。
参考文献:
[1]彭妙颜,周锡韬.定向扬声器系统特性及其在展陈建筑中的应用[J].电声技术,2015,39(8):21-30,53.
[2]朱荣钊,刘晶,刘文超,等.基于FPGA的声频定向扬声器系统的设计[J].计算机测量与控制,2018,26(2):154-157.
[3]王佑翔.微型声频定向扬声器的信号处理方法研究与实现[D].成都:电子科技大学,2010.
[4]李学生.微型声频定向系统理论及关键技术研究[D].成都:电子科技大学,2012.
[5]蒲刚,姜丽峰.一种数字式声频定向扬声器调制方法[J].电声技术,2013,37(3):13-17.
[6]黄波超.基于扬声器阵列的声场定向技术研究[D].大连:大连理工大学,2011.
[7]邱俊,张秀琴,李红元.定向发声的超声波模组[P].中国:CN109547911A,2019-03-29.
李子涛,吴俊强.基于超声波的微型定向扬声器的设计[J].电脑知识与技术,2020,16(5):236-237.
2019年江苏省大学生创新训练项目(2019016X).
分享:
随着经济的快速发展,噪声污染被列为世界四大环境污染之一,逐渐引起人们的强烈关注。防治噪声污染的措施有3种:在声源处控制、在噪声传播过程中阻断、在受声点处防护。其中阻断传播过程是一种既经济有效又方便快捷的方法,目前已成为治理公路交通噪声最常用的措施。
2024-12-04适用于固井质量评价的声波测井类的测量方法均是利用套管中传播的某种模式波的幅度或衰减评价水泥的胶结情况.例如,贴井壁的扇区水泥胶结测井SBT(Segmented Bond Tool)在套管中激发了类似薄板中的零阶对称兰姆波,即准S0模式,以下简称拉伸波,通过补偿式的衰减测量方式得到拉伸波的衰减;超声反射成像测井时声源辐射的声束垂直入射到套管内壁,主要激发套管共振波,类似薄板中的高阶对称兰姆波,共振波幅度的大小反映了套管与水泥之间的耦合程度。
2020-09-05声波远探测技术是近年来发展较快的技术,可以对井外范围数十米的裂缝、断层、地质界面进行探测,具有巨大的应用前景.多年来,国内外对声波远探测方法开展了一系列研究,Hornby在1989年从阵列波数据中提取处反射波,并利用偏移的方法得到了井旁地层结构变化的图像.1998年,Schlumberger公司推出了反射波成像测井仪.
2020-09-05非均匀介质中波传播的数值模拟是逆时偏移(RTM)成像方法和全波形反演(FWI)(Tarantola,1984)的重要组成部分.在地震波模拟的各种数值方法中,时域有限差分(TDFD)方法被广泛应用于求解波动方程;因为相比其他方法,例如有限元法(Marfurt,1984)和谱元法(KomatitschandVilotte,1998;李孝波等,2014),它更容易实现、计算成本更低(Huetal.,2017).
2020-08-04本文探讨了超声波测距的原理与优势,并利用超声波测距技术,设计了一款具有测量功能的剪断钳控制系统。该系统主要包含了单片机AT89S52,超声波发射与接收器,温度传感器,电机控制模块,剪断装置等,重点阐述硬件电路的设置和主程序流程,并对超声波速度进行了温度修正,提高了测量精度,最终实现了量剪一体化。
2020-07-15对于被压接工件压接质量检测方法主要有外表尺寸测量法和力学试验检测法。外表尺寸测量法是对压接后的被压接工件进行尺寸测量来分析工件压接的好坏,这种方法不能直接观察到其内部的压接状况。力学试验检测法是一种破坏性的检测方法,通过对压接后的工件进行解剖,直接检查其内部的压接状况。
2020-07-15在目前注重定位的时代,TOA,AOA,RSSI等定位理论层出不穷。但由于基于TDOA的定位具有定位精度高和复杂性低等优点,因此得到广泛应用。目前TDOA的基本算法主要由Chan算法、Kalman滤波算法、Taylor算法和Fang算法等组成,本项目采用的定位算法为Chan算法和Taylor算法。
2020-06-19深度学习[21]是近年来引起广泛关注的机器学习的一个分支,该概念由Hinton等[22]提出。深度学习实质上是一种人工神经网络,但比以往的人工神经网络具有更深的神经元层,通过组合低层特征形成更加抽象的高层特征,以发现数据的分布式特征表示,减少了人工提取特征的巨量工作。
2020-06-10Moya方法为一种基于震源模型的计算绝对场地响应值的方法[10,11];H/V谱比法包括地震数据谱比法和噪声谱比法,该方法因操作简单且可信度较高而得到了广泛的应用[12,13,14,15,16,17]。考虑到应用噪声谱比法对内蒙古地区台站场地响应情况的研究较少,本文在测震台站记录的地脉动噪声数据基础上,采用噪声谱比法研究内蒙古西部地区台站的场地响应变化。
2020-06-10本文针对实际的应用场合与应用需求,提出一种为多基阵炸点定位方法服务的连续多通道端点检测方法,首先利用巴特沃斯滤波器对声音信号进行去噪,初步去除干扰。将短时能量与短时过零率相结合的方法,设定双阈值,对采集到的炸声信号进行处理。最后,完成对4个感兴趣段的起始点与终止点的坐标进行准确提取。仿真结果表明,该算法符合实际应用需求。
2020-06-08人气:6012
人气:3743
人气:3692
人气:3085
人气:2959
我要评论
期刊名称:计算物理
期刊人气:1486
主管单位:中国科学技术协会
主办单位:中国核学会
出版地方:北京
专业分类:科学
国际刊号:1001-246X
国内刊号:11-2011/O4
邮发代号:2-477
创刊时间:1984年
发行周期:双月刊
期刊开本:大16开
见刊时间:一年半以上
影响因子:0.735
影响因子:0.645
影响因子:1.369
影响因子:0.874
影响因子:0.385
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!