摘要:为了提升电力工程数据分析的效率及准确度,文中开展了融合多特征参数的电力工程数据应用智能算法设计研究。在考虑多种电力工程特征参数的基础上,建立了基于线性判别分析与遗传算法优化极限学习机的电力工程数据分析模型。其通过对原始参数进行线性判别分析进而得到主要参数,不仅消除了原始参数的相关性,还降低了参数的维度。同时采用遗传算法优化了极限学习机的输入权值与阈值,再对电力工程数据的分析模型加以训练。仿真分析结果表明,所提模型在电力工程数据分析上的计算速度快且准确度较高,可以辅助电力工程施工进行决策、及时落实管控措施,避免事后评估所带来的损失。
加入收藏
近年来随着各类自动化及信息设备越发齐全,对电力工程投资的合理性、精准化要求也愈加严苛。科学测算电力工程数据和经济指标,且分析影响工程投资的关键因素,有利于辅助后期施工,并及时进行管控,从而预测风险、避免损失[1,2]。
最初的电力工程数据分析手段为基于类比与回归思想的传统成本估算法,包括生产能力指数法(Productivity index method)和朗格系数法(Lange coefficient method)。20世纪80年代,基于现代数学理论的电力工程数据分析方式逐渐兴起。其主要包含蒙特卡洛法(Monte Carlo Method,MCM)及模糊数学法(Fuzzy Mathematics Method,FMM)等[3,4]。但上述方法构建的模型均较为复杂,且运算量也偏大,因此应用效果并不理想。而人工智能技术的发展,为电力工程数据的分析及应用带来了新思路[5]。采用智能算法来分析电力工程数据,以提高分析效率及准确性成为了当前的研究热点。
针对上述问题,该文基于融合多特征参数技术,开展了电力工程数据应用智能算法设计,进而实现对工程数据的准确分析。
1、电力工程数据多特征参数提取
1.1电力工程数据参数
电力工程数据参数较多,诸如工程所在地、建筑面积、工程数量、建设单位及人工单价等。过于庞大的参数会对智能算法的效率造成影响,甚至导致模型失去准确性。
因此,该文提出采用线性判别分析(Linear Discriminant Analysis,LDA)来提取电力工程数据的特征参数,实现主成分分析。由此既保留了变量的主要信息,又简化了智能算法模型输入的数据量,从而提高算法的效率及准确性。
1.2基于LDA的多特征参数提取
LDA是数据分析中最经典的方法之一,其主要目的是减少数据的维度,并使数据信息尽可能多的被保留[6]。
假设原始数据集B=(x1,y1)(x2,y2),…,(xn,yn),其中xn为m维向量。原始数据集B可被分为K个类别B1,B2,…,Bk,…,BK,Bk中包含Nk个数据样本。则LDA算法包括以下几个步骤:
1)分别计算K个类别及整个原始数据样本的均值,计算方式如下:
式中,μk为第k个类别数据样本的均值;υ则为整个原始数据样本的均值。
2)计算整体、类内及类间共3个散度矩阵,则有:
式中,At为整体散度矩阵,Ak为第k个类别的类内散度矩阵,Aw是所有类别的类内散度矩阵之和,Ab为类间散度矩阵。
3)求解Aw-1Ab矩阵特征值。其计算方式为:
式中,λ为Aw-1Ab矩阵的特征值。
4)计算投影矩阵。将Aw-1Ab矩阵的特征值按从大到小排序,筛选出前h个特征值λ1,λ2,…,λh。并计算其特征向量w1,w2,…,wh,从而实现m维数据向h维数据的映射:
式中,x′为降维后的数据。
2、电力工程数据智能算法设计
该文设计了遗传算法(Genetic Algorithm,GA)优化极限学习机(Extreme Learning Machine,ELM)的电力工程数据应用智能算法,其具体框架如图1所示。
图1智能算法框架设计
该算法首先通过线性判别分析来融合多特征参数的电力工程数据,并消除参数间的相关性且实现指标变量的降维。其次通过GA-ELM构建电力工程数据预测模型,同时遗传算法会优化极限学习机的初始权值与偏置。最终,在保证预测精度的情况下实现对电力工程数据的预测。
2.1传统ELM算法
极限学习机具有单隐层前馈型网络结构,其特点是可随机生成隐含层参数。且在初始化完成后,仅需调整隐含层神经元的个数即可满足相应的计算需求[7,8],其主要结构如图2所示。而传统的BP(Back Propagation)神经网络则需根据误差反馈不断调整输出层权重,故相较而言ELM的训练速度更快且过程也较为简洁。
图2单隐层前馈型网络结构
假设样本训练集个数为n,隐含层数量为l,神经网络的输出Y=[y1,y2,…,yk]。设图2中的输出函数为F(a,x,η)为输出函数,对于线性叠加型隐藏层节点有F=f (aixj+ηi),则输出矩阵Y为:
其中,f为核函数,n表示输出变量的个数,ai表示输入权重,γin表示输出权重,ηi表示第i个隐含层的阈值。
将样本的训练集输入到初始的人工神经网络中,便可得到隐含层输出矩阵为D。进一步得到输出权值γ为D+Y,其中D+为D的伪逆矩阵。
2.2改进算法设计
由于ELM随机生成输入层与隐含层的连接权值及隐含层的阈值,所以在训练过程中易受随机性的影响而导致其稳定性较差。而遗传算法受种群进化模式的启发,通过优胜劣汰的规则,最终获得最优解[9,10]。因此,可采用GA算法对ELM的输入层与隐含层的连接权值、隐含层阈值进行寻优,从而优化网络结构并提高ELM的性能[11,12,13]。GA-ELM的建立步骤如下:
1)初始化遗传算法的相关参数。
设置最大迭代次数、染色体基因上下界限、变异因子。由ELM的初始输入层连接权值ωi、隐含层初始阈值bi组成染色体。
2)计算第i个染色体适应度fi>F。
ELM中引入染色体对应的输入层连接权值及隐含层初始阈值,通过样本训练得到预测值,进而获得初始化种群单个染色体的均方误差(MSE),即为染色体适应度。
3)比较每个染色体当前适应度fi>F与最佳位置Fb。
若fi>Fb,则当前适应度较高,故将用当前适应度Fb更新群体所发现的最佳位置Fb。
4)进行变异、交叉和选择操作,更新每个染色体基因。
当最佳适应度达到设定阈值,即停止寻优过程。通过GA算法得到的最优输入连接权值a与初始阈值η后,再利用γ=D+Y即可计算出模型预测值。
综上所述,文中所设计的电力工程数据智能算法求解流程如图3所示。
图3智能算法求解流程
3、算例分析
文中以2020年某省200个配电工程数据为样本,建立了基于所提智能算法的电力工程数据分析模型。并按4∶1的比例将数据划分为训练集和测试集,且将15个影响配电工程数据结果的因素作为输入变量。
3.1特征参数提取
采用数据处理工具SPSS(Statistical Product and Service Solutions)[14]对200个样本及15个影响因素进行分析。通过计算15个影响因素的特征值,并将其从大到小进行排序,再提取前h个特征值,从而确定提取的主要影响因素。15个影响因素的对应的特征值计算结果,如表1所示。需要说明的是,由于前7个影响因素的特征值均大于1,而后8个影响因素的特征值则小于1,故提取前7个影响因素作为特征参数。
表1影响因素对应特征值
3.2模型训练
在Matlab环境下[15,16],利用所提的GA-ELM算法训练神经网络。以样本集中的160项配电工程数据作为训练样本,剩余40项则作为测试样本。先通过训练集样本来训练网络,再将测试集样本输入至训练好的网络中对模型性能进行测试。图4为模型的拟合曲线,其中横坐标为电力工程数据测试集样本编号,纵坐标则是样本数据分类号,二者均为无量纲的值。由图可知,测试样本预测值与真实值误差较小,预测值曲线与真实值曲线的趋势大致相同,且吻合良好。
图4模型的拟合曲线
3.3模型对比
为了验证该文算法的优越性,与其他3种算法的性能进行比较。对比算法包括LDA-ELM算法、未经过LDA数据预处理的ELM算法以及GA-ELM算法。4种算法的拟合曲线,如图5所示。可以看出,ELM和LDA-ELM模型的预测值与真实值差距大于其他两种算法。而GA-ELM模型的拟合程度虽与前两种算法相比较高,但仍低于该文算法模型。由此可知,文中模型的预测精度最高。
图5多种模型拟合曲线
利用训练好的网络对影响电力工程数据结果因子的灵敏度进行分析,以考察各因素对电力工程数据指标预测值的影响程度,分析结果如表2所示。通过对预测值改变量的绝对值进行排序,可见第3个主成分对于电力数据的预测影响最大。
表2灵敏度分析结果
综合上述分析结果,证明了基于LDA主成分分析及GA-ELM电力数据的分析模型具有良好的预测精度、稳定性及泛化能力。
4、结束语
文中利用线性判别分析融入电力工程多特征参数,构建了一种融合遗传算法与极限学习机的电力工程数据分析模型。通过仿真分析表明,所提智能算法模型在电力工程数据分析方面的性能优于对比算法。且该算法在实际应用中能够准确监测电力工程施工投资所涉及的各项数据,并进行预测分析,从而为企业的投资决策提供技术指导。但由于文中构建的电力工程数据分析模型,所融合的智能算法有限。因此在下一步研究中,将融入更多的智能算法对电力工程数据进行分析。
参考文献:
[1]刘沁基于深度学习和聚类算法的电力工程建设数据分析系统设计[J]电子设计工程,2021 ,29(3):27-30,35.
[2]乔惹婷,文上勇,黄琰.电网输电工程项目数据插补及造价预测融合模型[J]沈阳工业大学学报2021 ,43(5):481-486.
[3]何伟,陈凡,缪晗,等电力系统充裕度评估中的交叉熵蒙特卡洛方法[J]电力学报,2020,35(3).235-245.
[4]黄新波,吴明松,朱永灿,等甚于模糊数学的电缆线路风险评估模型研究[J].高压电器,2021,57(9):19-25.
[5]袁兆祥,余春生基于DBSCAN聚类的电力工程数据完整性分析[J]沈阳工业大学学报,2019,41(3).246-250.
[6]谢乐,衡熙丹,刘洋,等基于线性判别分析和分步机器学习的变压器故障诊断[J]浙江大学学报(工学版),2020,54(11):2266-2272.
[7]徐睿梁循,马跃峰,等. ELM网络结构自适应正交搜索算法[J].计算机学报,202 1 ,44(9):1888-1906.
[8]杨本臣,于坤鹏,张军基于ELM优化模型的用户短期负荷研究[J].计算机应用与软件,2019,36(11):91-95,187.
[9]黄静,刘玉惠-种求解约束优化问题的遗传算法[J]青海师范大学学报(自然科学版),2020,36(1):11-15.
[10]李东虎,徐凌桦龙道银,等遗传算法优化BP神经网络的光伏阵列故障诊断[J]微处理机,2021 ,42(6)-23-26.
[11]秦勉,钟建伟朱永丹,等于GA- ELM的短期负荷预测研究[J]湖北民族大学学报(自然科学版),2021,39(1)111-114.
[12]卢彩霞王新环,王全义基于GA-ELM的电压暂降源识别研究[J]传感器与微系统,2020.39(12):64-67.
[13]张立峰,佟彤基于GA-ELM及电容层析成像的两相流流型辨识[J]电力科学与工程,2020 ,36(8):37-41.
[14]刘天成.凌书平,许景生基于SPSS软件回归分析的基站用电建模与应朋[J]软件2021 ,42(4):57-61.
[15]李帅,李静基于MATLAB仿真分析频谱信号的误差[J]工业控制计算机,2021,34(1):86-87.89.
[16]林思齐,能永新,姚伟.等基于MATL AB/Simulink的新- -代电力系统动态仿真工具箱[J]电网技术,2020,44(11):4077-4088.
基金资助:国网甘肃省电力公司2021年专项成本项目(W21PW2702093);
文章来源:黄亚飞,陈青云,张辽等.融合多特征参数的电力工程数据应用智能算法设计研究[J].电子设计工程,2023,31(21):109-113.
分享:
数据终端采集系统需要对电压、电流、电能、功率等多种电气参数进行实时采集,随后上传到主站中进行存储,便于数据的后期处理。系统可以对用电信息进行分析处理,针对异常用电数据进行标记显示,以确保数据终端采集系统数据信息的有效性和精确性。随着电力系统的规模扩大以及用电需求的增加,电气数据采集变得越来越重要。
2025-01-07随着智能电网建设的不断推进,电力系统的运行效率和可靠性成为关注的焦点。低压台区作为电力系统的重要组成部分,其线损问题直接影响电网的经济运行和供电质量。低压台区线损是指电力在输电、变电、配电过程中由于电阻、电抗、设备损耗等原因而产生的电能损失。线损不仅直接降低了供电企业的经济效益,还可能影响电网的安全稳定运行。
2024-12-05随着科学技术的发展,电力系统的网络拓扑结构越来越复杂。同时用户需求的提高使得电力设备的种类日益增多,且智能化程度不断提高,AI技术的应用也使传统电力系统逐步向智能电网的方向迈进。在智能电网的发展过程中,也同时存储着大量的用户数据,为精准分析用户行为提供了基础。
2024-12-04电力系统是一个由多个子系统和设备组成的高度复杂系统,其包括发电、输电、配电和用电等环节。在这些环节中,涉及到大量的数据采集、传输和处理过程,数据来源也十分广泛,如传感器、计量器、监测系统等,使得电力数据具有高度的异构性和复杂性,需要对有效数据集成和分析,以便更好地理解和控制电力系统。
2024-12-03风机基础施工常见质量通病包括:基础不均匀沉降、混凝土强度不足、较多裂缝、冷缝等。以上质量通病会导致风电机组的倾斜和不平衡,影响风电机组在不同运行工况下的正常工作,严重时甚至造成基础的破坏和倒塌,从而威胁风电场的安全。本文结合实际案例,采用全面因素分析方法,针对风机基础施工中的每个施工环节的施工工艺和关键工序的质量控制。
2024-11-20对于电力施工企业项目而言,影响成本控制效果的因素涉及多个方面,从人力资源成本的角度分析,电力工程施工项目需要大量的劳动力,人工成本是项目成本的重要组成部分[1]。人员的工作效率、技术水平以及人工成本的合理安排,都会直接影响项目的成本控制效果。从材料成本的角度分析,电力工程需要使用大量的电缆、设备、工具等材料。
2024-11-11面对越来越大的生产需求,能源资源需求量也在逐渐增大,尤其对电力能源的需求更是与日俱增;而停电事故的发生意味着电网仍具有一定薄弱性,薄弱环节的存在极易造成电力故障发生连锁反应,降低局部或整体电网的运行安全性和稳定性.因此,识别电网中的薄弱环节一直是电力公司着力研究的项目之一,但是目前取得的成果与预期效果存在很大差距.
2024-11-11风电作为清洁能源,近年来并网入电比例不断加大,极大带动了风电建设市场的发展。根据目前风电建设市场现状,环境条件好、项目建设简单的风电场越来越少,风电施工项目逐渐转向风电资源丰富的山区地带,未来山区风电将迎来跨越式的发展。山区地带道路狭窄弯曲,纵横坡度较大,地面土质较为松软。
2024-11-11大雅河抽水蓄能电站位于辽宁省本溪市桓仁县大雅河上,站址距桓仁县城40km, 距沈阳市直线距离为152km。上水库位于大雅河左岸一撮毛山及其相邻次高峰之间的鞍部,通过开挖鞍部和在其东西两侧筑坝形成库盆。
2024-11-02配电网故障检查与维修在现代电力系统管理中扮演着重要角色,有序开展该项工作,可提升整个电力系统的运行稳定性。过去,由于技术水平等因素的影响,一般采用人员检查维修的方式。即工作人员根据后台监测信息,利用相关设备对配电网进行检测,以判断故障具体位置,并进行维修。
2024-10-23人气:3432
人气:2443
人气:2394
人气:2322
人气:2227
我要评论
期刊名称:电子设计工程
期刊人气:3202
主管单位:九三学社陕西省委员会
主办单位:西安市三才科技实业有限公司
出版地方:陕西
专业分类:电子
国际刊号:1674-6236
国内刊号:61-1477/TN
邮发代号:52-142
创刊时间:1994年
发行周期:半月刊
期刊开本:大16开
见刊时间:10-12个月
影响因子:0.333
影响因子:0.315
影响因子:0.438
影响因子:0.000
影响因子:0.527
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!