摘要:为了快速准确地测量半钢化玻璃的应力应力双折射大小,实时监测产品质量,结合半经典理论与三镜腔理论模型,研究了基于激光回馈效应的半钢化玻璃应力双折射自动测量技术。测量装置由精密光学元件及运动平台组合搭建,由偏振光低电平的占空比自动判断样品主应力方向,测量效率较高;采用降低输入电压变化梯度的方法,将输出电压控制在较小的范围内波动,提高了压电陶瓷位移稳定性。结果表明,样品应力双折射的大小由调谐曲线上一个偏振跳变周期内偏振跳变点的位置决定,多次测量的最大偏差为6.1nm/cm,标准差低于2.0nm/cm。该技术具有测量周期短、精度高且重复性好等特点,适用于实际生产中。
加入收藏
在玻璃生产过程中,常用一些物理或者化学方法进行钢化处理,处理后的玻璃会产生预应力,从而提高其抗冲击强度和机械强度[1]。半钢化玻璃的性能介于钢化玻璃与平板玻璃之间,其强度是平板玻璃的两倍以上,相比钢化玻璃具有平整度较好、不易自爆[2]等特点。此外,半钢化玻璃具有抗风压性、冲击性和寒暑性等特点,常用于幕墙和外窗,应用场合较为广泛[3]。半钢化玻璃中的应力大小会受到生产工艺的影响,国家标准GB15763中规定,玻璃的钢化程度可以由应力表征,即半钢化玻璃的应力指标是检验其安全性能的一项重要标准[4]。因此测量分析半钢化玻璃的应力,对提高半钢化玻璃产品品质和安全性能具有实际意义。常用的半钢化玻璃应力测量方法各具特点,传统的薄切片光弹法和反射光法结合涂层法,其测量效率较高,但存在样品制作周期长、测量误差大等缺点,只适用于直观粗略分析应力的场合;光波导法[5]精确度较高,测量误差在10nm以内,但需要测量玻璃表面的折射率,并与集成光路技术协同作用,操作步骤较复杂。干涉色法测量装置简单但测量误差较大,一般在20nm~50nm;除此之外,超声波法、X射线法[6]和Senarmont光学测量法[7]等物理方法因精度高而受到广泛关注,但仍然存在装置结构复杂、价格昂贵、调试周期长等问题。近年来,激光回馈效应和应用技术的研究引起了国内外专家的关注。激光回馈效应又称为自混合干涉,它描述的是激光照射在外物上,部分反射光被物体反射回激光腔内后与腔内光场相互作用的调制现象[8]。由于激光回馈系统具有易准直、成本低、结构紧凑和精度高等特点,所以广泛应用在速度、位移、振动等测量领域。
为同时满足性价比、测量效率和测量重复性等工业要求,本文中选择精密光学元件搭建应力双折射自动测量系统,通过分析三镜腔理论模型中将回馈腔等效为腔镜反射率变化的过程,具体论述了激光回馈效应中出现的偏振跳变现象,深入研究了应力双折射的测量原理。该技术的主要特点是,利用偏振跳变曲线中特征点的位置,计算由半钢化玻璃应力引起的应力双折射大小,得到较精确的测量结果。在实际应用中,系统的控制程序根据o光和e光低电平占空比,自动判断半钢化玻璃的主应力方向,采用降低输入电压变化梯度的方法,减小电压波动,提高压电陶瓷位移稳定性,故激光回馈半钢化应力双折射测量技术相比其它应力测量技术具有更高的可靠性。
1、测量系统的基本结构
基于激光回馈效应搭建光学测量系统如图1所示。采用全内腔He-Ne激光器作为系统光源,波长为632.8nm,增益管长为140mm,输出单纵模线偏振光。腔镜是反射率分别为99.9%和98.5%的高反镜。回馈腔由腔镜(cavitymirror,M1)和回馈镜(feedbackmi-rror,M2)组成,M1为反射率98.9%的高反镜,回馈镜M2反射率为20%,并与压电陶瓷粘接。压电陶瓷为PI公司制造的高精度压电陶瓷[9],耐压1kV,三角波驱动电压低于200V。计算机控制采集卡输出的三角波电压经数模转换(digital-to-analogconverter,DAC)后,利用放大电路(amplifier,AMP)放大并施加到压电陶瓷上,继而驱动回馈镜前后往复运动,调谐回馈外腔长度。系统采用渥拉斯顿棱镜进行分光,与光电探测器D2组合使用,采集的o光、e光偏振态信号经模数转换(analog-to-digitalconverter,ADC)后输入电脑,同时,光电探测器D1采集的光强信号也由采集卡输入电脑,便于后续的程序处理。测量之前,需调节渥拉斯顿棱镜及衰减片,保证无扫描外腔时,只出现o光或者e光[10]。承载半钢化玻璃的电动控制台置于回馈外腔中,它的工作电流在1.5A以内,步距角为1.8°,细分数为16,在通光范围内不会遮挡光束,具有精确定位和长时间工作的性能。根据系统特性配备多功能电箱,其主要作用是:提供压电陶瓷驱动电压、采集并放大光电信号等。
2、应力双折射计算方法及原理
半钢化玻璃中的应力会表现出双折射的特性[11],根据国家标准GB903-87规定,可以通过光学玻璃的应力双折射(nm/cm),即主应力方向上单位厚度的双折射光程差σ表征应力:
σ=Δ/d (1)
式中,Δ是应力双折射光程差,d是玻璃样品的厚度。一般很难对Δ进行直接测量,而是通过o光、e光的相位差δ间接求得,关系为:
Δ=δλ/(2π) (2)
式中,λ为波长。由(1)式和(2)式可以得到o光和e光的相位差与玻璃的应力双折射之间的关系:
σ=δλ/(2πd) (3)
三镜腔理论模型于1988年由GROOT等研究人员建立[12],理论模型如图2所示。
图中初始光场分为两个部分,一部分被腔镜M1直接反射回腔内,一部分透过M1后被回馈镜M2反射回腔内,此时两光场相互叠加。将M1,M2等效腔镜与腔镜M3构成F-P腔,等效腔镜的反射系数为:
reff=r1+r2t12exp(i2kl) (4)
式中,r1,r2分别为M1,M2的反射系数,t1是腔镜M1的透射系数,l为回馈腔腔长,k=2π/λ,由此可得等效
腔镜的反射率为:
Reff=|reff|2=r12+2r1r2t12cos(2kl)+(r2t12)2(5)
当回馈腔中放入存在应力的样品时,回馈腔分为两个不同的物理腔长,样品产生的相位差为δ,o光和e光两个方向上有不同的外腔光程,o光和e光的等效反射率分别为:
{Ro,eff=R1+2r1r2t12cos(2kl)Re,eff=R1+2r1r2t12cos(2kl+2δ) (6)
式中,R1为M1强度反射率。(6)式表示测量系统中回馈腔的作用等价于腔镜反射率的变化,此时则能在激光腔内利用半经典的气体激光器理论研究激光回馈效应[13]。
如图3所示,设o光方向为x方向,e光方向为y方向,当激光器本征偏振态为x方向时,偏振态x的等效反射率等于正常激光回馈反射率,即Rx-x,eff=Rx,eff,此时y偏振光未进入外腔,等效反射率等于腔镜反射率,即Rx-y,eff=R1。同理可得,当本征偏振态为y方向时,Ry-y,eff=Ry,eff,Ry-x,eff=R1。一般情况下,出射光的偏振方向取决于两个偏振态的损耗,在本文中可近似认为,激光器本征偏振态的等效反射率决定其相应的损耗大小,等效反射率越小,损耗越大,该偏振态在模式竞争中则处于劣势,较难起振[14]。当激光器本征偏振态为x方向时,AB段Rx-x,eff>R1,出射光为x偏振态;B点以后,Rx-x,eff<R1,出射光跳变成y偏振态,BC段Ry-y,eff>R1,出射光保持y偏振态;CD段Ry-y,eff<R1,出射光应该跳变成x偏振态,但是由于Rx-x,eff<R1,此时偏振态取决于Ry-y,eff和Rx-x,eff大小,因为Ry-y,eff>Ry-y,eff,故出射光仍为y偏振态,同理DE段偏振态为x偏振态,以此类推可得光强信号曲线。基于上述原理当两个偏振态的等效反射率受到回馈腔腔长的调制时,得到如图4所示的完整的调制曲线。
图4中光强信号和偏振态信号由D1和D2探测,当压电陶瓷(piezoelectricceramic,PZT)扫描外腔时,o光和e光交替出现,若将探测器D2放大至饱和状态,偏振态信号则被整形成方波[15]。一个调谐周期中包含几个特征点,a点、d点为光强最小点,c点、b点为等光强点,b点为偏振跳变点。光强曲线上的a点、b点、c点、d点分别对应o光和e光曲线上的A点、B点、C点、D点。在回馈腔中激光两次经过样品,B-C点的相位差是样品相位差的两倍,A-D点为一个间隔为2π的调谐周期。由此可得相位差与偏振跳变点的关系式:
δ=πlbc/lad (7)
由于o光、e光之间的相位差是由样品中的应力引起,故样品的应力双折射可表示为:
σ=λlbc/(2dlad) (8)
式中,σ为样品的应力双折射大小,λ为波长,d为样品厚度,lbc和lad分别表示b点、c点之间的长度和a点、d点之间的长度。
3、应力方向的自动判断
在测量半钢化玻璃样品应力的过程中,需判别样品的主应力方向,并使其与激光初始偏振方向保持一致[16]。在转动样品的过程中,回馈腔腔长与偏振态信号间变化呈现一定规律,当样品的主应力方向逐渐接近初始偏振方向时,随着回馈腔长度增加,偏振态光强增大。至两者方向完全一致时,其中垂直于主应力轴方向的偏振态分量会被完全隔离,只能探测到一种偏振态信号,出现谷底值为0V的标准方波信号,此时表示主应力方向与初始偏振方向相同,如图5所示。一般使用采集信号的电压值来表征光的强度。
在设计自动控制系统时,半钢化玻璃主应力方向的判别尤为重要,将上述规律进行总结设计程序,采用计算o光和e光低电平占空比的方法对主应力方向进行自动判别。理论上,当主应力方向与激光初始偏振方向一致时,经过渥拉斯顿棱镜后分开的o光和e光总的低电平占空比应为0.5。但在实际调节样品的过程中,系统受到外界温度、振动、杂散光等因素的影响[17],低电平的占空比往往不能达到理论值。图6是多次调节样品后偏振光低电平占空比的测量结果。
经过重复测试分析后得到,当两束光的低电平占空比不小于0.47即可获得标准的方波信号,该值与理论值误差小于6%,认为该值具有可信度,予以采纳。因此自动控制程序通过处理NI-6009数据采集卡接收的o光和e光信号实时判断其低电平占空比,驱动电动载物台运动[18]自动寻找样品的主应力方向,具有较高的定位精度与灵敏度,能有效地提高测量效率。
4、实验分析
选用厂家生产的长20cm、宽8cm、厚0.3cm的半钢化玻璃作为样品,如图7所示。
将样品放置在自动载物台上,以样品的一端点作为原点建立坐标系,在a区域中坐标为(0.5,0.5)cm处重复测量10次以评估系统重复性,测量结果如图8所示。单点测量最大偏差为6.7nm/cm,标准差为2.52nm/cm。
在上述测量过程中作者注意到电箱的输出电压存在漂移和波动的现象,导致压电陶瓷扫描外腔时的驱动电压不稳定,对测量结果的精确度与重复性产生较大影响。经过排除电箱中电源模块及信号放大模块等影响因素后,认为在相同时间内,电箱较大的电压变化梯度会导致其稳定性下降。因此为平衡电箱稳定性与电压输出范围的关系,通过增大控制电压的时间间隔降低输出电压的变化梯度,使电箱持续稳定地为器件供电。
在改善电箱的稳定性能后,继续在a,b,c,d4个边缘区域中选择A点(0.5,0.5)cm、B点(19.5,0.5)cm、C点(0.5,7.5)cm、D点(19.5,7.5)cm作为测量点进行10次重复测量,记录各次测量的应力双折射平均值与极值,测量结果如表1所示。
由表中数据可知,4个测量点的应力双折射值均在半钢化玻璃国家标准[19]中规定的624nm/cm~1794nm/cm范围内,样品属于合格的半钢化玻璃。其中单点最大偏差为5.1nm/cm,最大标准差为1.73nm/cm,多次测量结果的重复性较好。为检测系统长期工作的重复性与稳定性,随机选取同一批次中的另一块半钢化玻璃作为实验样品,重复上述测量过程,测量结果如表2所示。
同样,测量结果验证了该样品符合国家标准规定,该次测量的单点最大偏差为6.1nm/cm,标准差为1.79nm/cm,重复性较好。综合两组不同样品的测试结果进行对比,4个测试点中的单次测量最小偏差为3.7nm/cm,偏差最大为6.1nm/cm,造成测量偏差的原因除了测试环境的细微差别外,还有激光器自身特性的微小变化[20],均属于正常的随机误差范围,测量结果标准差平均低于2.0nm/cm,在一定程度上达到稳定测量的要求。
5、结论
为保证半钢化玻璃的生产质量,提升其在各种应用场合的安全性,对基于激光回馈效应的半钢化玻璃应力双折射自动测量技术展开研究。根据系统实际需要,选择合适的激光器参量和其它光学元件搭建了光学测量系统,以三镜腔理论和半经典理论为基础解释了由半钢化玻璃应力引起的偏振跳变现象及其应力双折射测量方法。
(1)系统对半钢化玻璃的测量是依靠激光器内部偏振态直接反映应力双折射大小的,多次重复测量的偏差控制在3.7nm/cm~6.1nm/cm范围内,标准差低于2.0nm/cm,相比波导法具有结构简单、操作便捷等特点,相比干涉色法与Senarmont补偿法,在精度和重复性上具有优越性。
(2)自动控制程序与精密电动载物台配合能够快速准确地定位样品的主应力轴方向,占空比可达0.47以上,进一步提高测量效率和自动化水平。
(3)测量装置采用的器件均为精密光学元件,系统结构简单、性价比高,能够在实际生产过程中灵活运用,为在线测量半钢化玻璃应力双折射大小提供重要思路。
马响,邓勇,张书练.激光回馈半钢化玻璃应力双折射测量技术[J].激光技术,2020,44(03):371-376.
基金:国家自然科学基金资助项目(61775118).
分享:
2022年, 全世界的糖尿病患者已超过5.37亿。 对于他们而言, 无创伤的血糖检测一直是他们的期待。 基于近红外光谱法的血糖检测是一个有前景的无创方法, 采用两个或多个光源-探测器距离进行差分测量的方法, 可以有效地提高活体光谱采集的稳定性, 也是目前该领域多采用的测量形式。
2024-05-11提出了一种利用数码相机进行观测的新型分光计方案及其调节方法,并研制了实验样机.利用数码相机替代了传统分光计中的望远镜部分,可观察并记录相关光学现象.调节分光计时,首先利用数码相机镜头对焦于无穷远作为标准进行平行光调节,然后利用反射狭缝像的位置调节载物台与旋转轴的垂直,最后以载物台为基准调节数码相机及平行光管与旋转轴垂直.对新型分光计的特性分析及实验结果表明:该新型分光计具有调节难度低、测量误差小、能同时观测多条光谱线的特点。
2020-12-08长波红外光谱(8~14μm)是介于中红外波段和太赫兹波之间的重要电磁辐射,对应着地球表面常温目标物体的辐射波段和地球“第三大气窗口”,相对于短波和中波红外辐射,长波红外辐射受大气散射影响较小。因此,长波红外辐射在红外夜视、资源探测、精确制导、安防报警等科研及国防领域具有极其重要的应用,为国家综合实力的重要体现。
2020-12-08气体浓度检测一直是十分重要的工作,它与人类生活、环境变化和工业生产都息息相关,尤其是有毒有害气体的检测。近年来随着光谱技术的大力发展,可调谐半导体激光光谱技术(tunablediodelaserabsorptionspectroscopy,TDLAS)已逐渐发展成熟,它具有灵敏度高、响应速度快、实时监测以及优秀的便携性等优点,成为了气体检测的重要技术之一。
2020-12-08随着科学技术的不断发展进步,军事和镜头相关的工商业领域都越来越多的使用红外光学系统。尤其在军事方面,光学系统发展迅速,导致军事方面对光学系统的性能有越来越高的要求。通常情况下,摄远物镜的系统长度小于其焦距[1],所以焦距相同时,把红外物镜设计成红外摄远物镜就可以很大程度上减少系统的制作成本。
2020-12-05光刻工艺是集成电路制造中最重要、最关键的工艺步骤之一。随着半导体技术的飞速发展,图形越来越密集,特征尺寸越来越小,对光刻工艺分辨率的要求越来越高。光刻工艺中一个重要的性能指标是每个图形的分辨率。在先进的半导体集成电路制造中,为获得高集成度器件分辨率很关键。
2020-11-20激光加工是一种非接触、无污染、无磨损的加工工艺,它包含激光切割、激光打孔、激光标刻等加工方式。激光打标技术已经在众多领域占有很大的比例,国家根据激光标刻行业制定了一系列的标准。工艺参数的设定在激光标刻过程中对其加工质量和效率起到了重要作用[1]。本文以激光标刻文字、条形码为研究对象,通过优化汉字笔画打标顺序和圆弧代替直线加工,能够激光标刻质量和效率。
2020-10-19在我们最近的工作中[11],将RF白噪声和波长调制被同时添加到OA-ICOS系统中,提出了一种痕量气体检测的新方法(RF-WM-OA-ICOS)。与未受RF噪声干扰的OA-ICOS相比,RF-WM-OA-ICOS的探测极限提高了约6倍。本文将进一步地详细研究RF噪声扰动对WM-OA-ICOS系统的二次谐波信号的影响,并基于该技术建立了一套高精密的甲烷气体测量装置。
2020-09-09自动随着公路建设的不断发展,对公路建设的质量提出了更高的要求,需要构建公路磨耗层质量自动监测模型,结合大数据信息处理方法,进行公路磨耗层质量自动监测的信息处理,提高公路磨耗层质量监测的自动化水平[1],从而提高公路建设的质量,提高对公路磨耗层质量信息健康管理水平[2],采用大数据信息管理和优化融合调度技术,进行公路磨耗层质量自动监测系统开发设计,在信息化管理平台下,进行公路磨耗层质量自动监测方法改进,对相关的公路磨耗层质量自动监测模型研究具有重要意义。
2020-08-10激光线性结构光传感器具有结构简单,体积小等特点,广泛用于焊接的焊缝追踪,轨迹规划等,称为焊接过程自动化的关键技术之一。而在结构光条定位中,为了提高定位精度,提出了亚像素的概念,是指在相机得到的像素和像素之间还有几十到十几个微米的距离。而通常我们计算出的坐标都是正整数,这表示的是我们是在对像素进行操作,而亚像素计算出来的坐标是实数,能够极大地提高算法的精度。
2020-08-10我要评论
期刊名称:应用光学
期刊人气:3788
主管单位:中国兵器工业集团公司
主办单位:中国兵工学会,中国兵器工业第二〇五研究所
出版地方:陕西
专业分类:科学
国际刊号:1002-2082
国内刊号:61-1171/O4
邮发代号:52-245
创刊时间:1980年
发行周期:双月刊
期刊开本:大16开
见刊时间:一年半以上
影响因子:0.735
影响因子:0.645
影响因子:1.369
影响因子:0.874
影响因子:0.385
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!