摘要:智能密集存储系统中的子母车换层技术可大幅提高系统柔性和冗余度,为实现子母车的层间自动调度作业和动作执行,提出了集合机械设计、电气控制和作业调度等关键技术的系统解决方案,重点研究了方案规划、换层提升机设计、换层控制、层间作业调度和货位优化等关键问题。另外,开发了整套物流自动化系统,通过工程实例验证了系统的有效性和可行性。
加入收藏
近年来,随着实际可供给建设存储仓库的土地短缺及仓储物流业务的发展,对仓库容量和运行能力带来了巨大挑战,要求在相同建筑面积内尽可能多的设备和货位,即增加存货量。
堆垛机立体仓库(AS/RS)是最广泛应用的自动化仓储物流系统,但堆垛机立库的局限性以及占地面积大的缺点限制了发展,并且系统的作业效率有限,尤其集中入出库效率上并不理想,这些因素共同推动了密集式存储系统的发展。
密集存储系统相比较堆垛机式自动化立体库系统,货物间距进一步压缩,存储量更大,密集存储系统作为智能物流的新模式,应用越来越广泛,如乳业、药业、酒业等行业,一方面提高了空间利用率,解决存货量的问题;一方面对使用方式提出新要求,对传统模式产生冲击。
子母车式密集存储系统作为密集存储系统的衍生与补充,其中穿梭母车替代了堆垛机的水平运动,子车替代了堆垛机货叉运动,提升机替代了堆垛机的垂直运动,通过三者的组合运动来实现货物出入库,其效率更高、柔性更强。目前大部分密集存储系统为单层单车,每层都设置配套子母车设备,层与层之间互不相通,产品通过入出库提升机转运至相应层后,该层的子母车设备只能完成该层的入出库作业。
本文通过优化物流规划方案,子母车设备可互通换层,即通过子母车换层提升机实现将任意层的子母车设备调度转运到任意货架层,再完成该层的入出库作业。
换层子母车系统能够根据需求实现多层入出库任务的执行,在提升作业效率的同时,更具柔性和冗余度,可广泛应用于智能密集存储系统中,具有很高的研究价值。
1、系统组成
子母车式密集存储系统主要由密集存储货架及子母车通道、子母穿梭车、子母穿梭车换层提升机、产品输送提升机、库端站台设备和外设其他输送设备系统组成;软件系统主要由控制系统、监控系统、调度系统、管理系统等组成。
1.1 密集存储货架
密集存储货架采用穿梭式货架,是与子母车配合使用的专业特殊货架类型,相较于常规的横梁式货架,穿梭式货架通过子车轨道以及母车轨道与货架的互相连接,具有更加紧密的连接结构,使货架的整体性更强,相对应的强度和刚度也随之提高,保证货架稳定性。
穿梭式货架中使用的轨道,既要保证子母车高速平稳的运行,也同时需要保证可正常承载货物,所以衍生了特殊的轨道类型。既可以保证子车在轨道中顺利运行,又可保证货物放置的稳定性;且穿梭式货架可以做到一端入库,一端出库,在物理上满足货物的先入先出。
1.2 子母穿梭车
子母穿梭车由穿梭车(TheShuttle)和卫星小车(TheSatellite)两部分组成,穿梭车即为母车,卫星小车围绕着母车进行工作,即为子车。
供电方式,母车的供电来源为轨道上的滑触线,子车的供电来源为母车,子车自身采用48v电池供电,当每次子车完成任务回到母车时,会有自动的供电系统给子车进行充电;
信息通讯,母车是与巷道末端的AP基站进行信息交互,接收系统任务,而子车是通过与母车上的基站进行通讯接收具体任务,实现整体系统的正常通讯。
子母穿梭车是通过子车与母车的配合运行,实现对具体货物的入出库。当接收入库任务时,母车从入库站台接收货物,运行至相对应的子车巷道,停准后,子车会将货物输送至具体的货位地址,完成入库任务;当接收出库任务时,母车先运行到相对应的子车巷道,停准后,子车将相对应的货物输送至母车上,母车再将货物输送至出库站台,完成出库任务。
1.3 子母穿梭车换层提升机
子母穿梭车换层提升机是根据子母穿梭车在换层使用时的特殊性而研制的专机设备,相对于常规往复式提升机的区别在于,提升机轿厢内的导轨采用母车轨道形式,且无动力输入,需要安装滑触线,保证子母穿梭车从货架区域转换至提升机区域的持续供电,有稳定的动力来源,才能使子母穿梭车自主完成驶入,驶出和停准等动作。
1.4 输送设备
输送设备系统是根据子母车式密集存储特点所设计的满足使用的整体输送设备,子母穿梭车无法自主的将产品货物进行垂直方向的输送搬运,需要配套的产品提升输送系统进行对接,保证把货物可输送至对应的每一层。
2、换层子母车系统的关键技术
子母车换层提升机是整套子母车换层系统中的核心设备,在子母车设备换层工作过程中,由于子母车设备自重较重,且再包括产品货物后整体重量能够达到2.5吨以上,子母车设备驶入和驶出换层提升专机设备时,提升机轿厢的提升链条会随之产生形变(随子母车设备驶入驶出轿厢会产生回弹现象),导致固定式轨道和轿厢内轨道的偏差增大,且子母车供电方式为滑触线供电,所以在子母车换层过程中在不仅需要保证换层过程中轿厢稳定性,且还需考虑子母车供电滑触线的接头处的精度及安全性,否则无法实现子母车换层运行的稳定性。
2.1 机械关键技术
2.1.1 伸叉式停准机构
方案在换层提升机轿厢载货台的四角增加4套可控制的伸缩停准机构,可在对应层高位停准后,伸出停准机构,然后继续下降至低位,4个机构平均分布在轿厢两侧,搭载在设备两侧的紧固板上,直至升降链条轻微松脱,停准机构与紧固板连接可靠,为对应层低位。此时子母车驶入和驶出均不再受设备提升链条的影响,且子母车驶入驶出时的滑触线对接精度可控制在1mm以内,达到子母车可靠的切换,平稳驶入驶出。
2.1.2 双集电臂设计
由于轿厢滑触线与轨道滑触线为分别供电,随子母车驶入驶出换层提升机的过程中,会出现短暂断电的情况,在子母穿梭车上设计为双集电臂碳刷,即驶入驶出时如一端脱离滑触线,保证另一端还能取电,以满足子母穿梭车正常使用。
2.1.3 增加提升机轿厢的机械阻挡
在保障子母车驶入驶出提升机轿厢的稳定性,同时需要提高子母车在提升机内部行走过程中的稳定性,重量大,且承载位置为轨道,较为光滑,而且输送过程中会产生震动,增加机械结构进行锁死,防止发生轿厢内部滑动。在端部增加阻挡,进入后弹出,驶出前落下。
2.2 电气系统关键技术
2.2.1 单双闭环切换复合控制
换层提升机提升采用伺服控制,外接BPS认址,能够高速、稳定的运行。在停准机构搭载在紧固板上时,其外部编码器值固定不变但内部编码器值持续变化。若依旧按照原有的双闭环控制进行控制,则会出现跟随误差持续增大情况,轻则伺服报警,严重则导致速度环持续增大,设备高速运行,损坏设备。
控制系统增加了单双闭环切换复合控制的控制方式,在停准机构伸出情况下,切换为单闭环控制,避免跟随误差增大情况,切除外部编码值的双闭环跟随效应,使此专机设备能够在伺服的控制下,稳定的搭载在紧固板上。
2.2.2 防超限系统
因子母车和换层提升机使用的特殊性,子母车会运行到相对靠近转运设备的站台进行取放货,由于子母车运行速度快,子母车存在冲进设备框架内的问题,导致转运切换设备无法进行切换,针对此问题,该项目从三个方面进行解决:
1) 机械设计:
在保证整体方案满足条件的前提下,增加入出库站台和设备框架的距离;
2) 电气设计:
转运设备框架和货架子母车轨道对接位置增加对射光电设备,以此来探测子母车是否冲入换层提升机,若冲入,则报警,使设备处于急停状态;
3) 子母车控制算法:
子母车定位方式为BPS定位,会记录在站台取货时所能达到的最远编码值,若超过此编码值,会进入报警状态,使子母车和设备处于急停状态;
从以上三个角度,保证了子母车运行的安全性及稳定性。
2.3 换层子母车系统货位分配及调度分析
2.3.1 货位分配优化分析
换层子母车式密集存储系统具有母车通道,多层货架及子车通道,货位存储的每个通道具有0至n个货位,不同通道的入出逻辑也不相同,有的通道先进先出,有的通道先进后出,还有的通道可两端同时入出,且需优化计算调度子母车,在不同产品的生产入库频率和单次入库数量差异巨大,需要根据入出库统计,给不同产品分配最优的货位,该项目采用聚类算法实现:
1)将不同货位分为k个聚类质心点:u1,u2,u3,…,∈Rn;
2)对于每一个产品xi,需要计算与每个质心uj的距离,xi则属于与他距离最近质心uj的簇cj:cj=argminj‖xi-uj‖2,j∈1,2,3,…,k;
3)对于每个类cj,重新计算该簇质心的值:。之后重复2)、3)进行算法收敛,得出每个产品最适合存放的货位。
2.3.2 子母车调度优化分析
由于换层子母车式密集存储系统子母车数量少于货架层数,即并非每层货架都有一套子母车设备,所以在产品入出库时需优化调度子母车设备,以具有8层货架共4套子母车的方案为例,主要设计了以下4种调度分配方式,可根据实际的使用需求,采用不同模式或者可相互切换的模式。
1)固定分配原则,此方式是较简单的分配作业方式,一套子母车设备只进行固定两层的入出库任务执行,即平均分配4台子母车固定初始位置为1,3,5,7层,子母车1,2,3,4号依次控制1、2层,3、4层,5、6层,7、8层。
根据上图所示,将子母车控制的货架区域进行固定分配确定,不需要进行过多的计算判断,逻辑算法简单,但是灵活性较低,适应于品相数量少,入出库效率要求不高的项目。
2)就近分配原则,如4台子母车初始位置为1,3,5,7层,2层有任务,就近调度原则进行分配,1层和3层的子母车都可以通过换层提升机来执行此任务,即空闲巷道最近的子母车执行任务。
根据图7所示,就近分配原则下,中间层有入出库作业时,可灵活调度上下两层子母车设备来执行该层的入出库的任务,对比固定式分配方式增加了调度的灵活性,但是此时如果上下两层子母车设备都有连续的作业任务,此时中间层的任务只能等待,此原则还是有一定的局限性。
3)空闲分配原则,如子母车初始位置为1,3,5,7层,2层有任务,1层、3层、5层子母车都正执行任务,则7层子母车设备将通过换层来进行执行此任务。
根据图8所示,在空闲分配原则下,子母车所控制的区域会根据实际任务的需要来灵活调度子母车设备,无设备必须负责的货架层,只针对任务来进行执行。对比之前两种方式设备调度更加灵活,但是未考虑高层换至低层换层时间。
4)空闲就近分配原则,子母车初始位置为1,3,5,7层,2层有任务,1层、3层、5层子母车都正执行任务,但是5层子母车执行完任务后不再有任务下发,且5层子母车进入二层时间短于7层子母车进入2层时间,将调度5层子母车进行执行任务。
根据上图所示,空闲就近分配原则下,计算每台子母车的空闲时间及整体换层时间,整体考虑换层子母车系统的效率,会最大程度节省换层时间及次数,同时保证子母车控制层数的相对稳定性。
子母车的调度方式主要依据实际客户的使用情况而定,品相数量少可采用固定分配原则此方式简单快捷;若品相数量多,采用空闲就近分配原则可更好的满足使用效率,减少不必要的换层。
3、工程应用与价值
本文子母车换层系统在实际某乳业项目进行了应用及验证,此乳业项目占地面积约为1600m2,采用换层式子母车密集式存储,每层2个母车通道,将货架区域分为3个部分,共计4624个货位,其中左右货架区域先入后出,中间区域可实现先入先出,每个母车通道区域的8层货架使用4套子母车,共8套子母车,在每个母车通道最端头设置了1台子母车换层提升机,共2台换层提升机;其他设备包含4台产品入库提升机,4台产品出库提升机及100多台链式输送设备。通过有优化机械设计、电控及调度设计满足了密集存储系统中的子母车设备能够调度到任意层,并实现产品的入出库作业。
该项目实际使用中,换层调度兼顾设备位置和设备利用率,调度采用的空闲就近分配原则,实现了入库效率135托盘/小时,出库效率为150托盘/小时,系统循环作业效率180托盘/小时以上,满足了项目要求的较高的的作业效率。项目的成功实施验证方案的可行性及解决了密集存储系统中子母车换层的设计及技术难点。
4、结语
通过对子母车换层在密集储存系统研究及应用验证,探索了密集存储系统新模式及新应用,拓宽了子母车密集存储系统应用,以此方案为核心,可延伸出更系统智能化的物流方案。该系统在子母车式密集存储系统的应用,不仅节省了前期业主投资,并且满足了高效率高冗余使用,为日后密集存储系统的应用提供了良好的借鉴。
参考文献:
[1]杨宝龙.双深位多层穿梭车系统出库作业建模与优化[D].济南:山东大学,2017.
[2]张娜.跨层穿梭车系统建模与优化[D].济南:山东大学,2018.
[3]罗键,苏海墩,何善君.基于改进遗传算法的自动小车存取系统升降机调度建模与优化控制[J].厦门大学学报(自然科学版),2010,49(03):328-332.
[4]杨玮,岳婷,李国栋.子母式穿梭车仓储系统复合作业路径优化[J].计算机集成制造系统,2018,24(09):2349.2356.
[5]杨玮,刘江,高贺云.堆垛机式密集仓储系统复合作业三维空间路径优化[J].计算机集成制造系统,2017,23(07):1552-1560.
[6]徐晶晶,刘晓娟.穿梭车货架系统及其应用[J].物流技术与应用,2012(02):69-72.
文章来源:田博,李郝岩,李鲲鹏,王焱,谢时军.换层子母车在智能密集存储系统中的研究与应用[J].制造业自动化,2022,44(05):140-144.
分享:
混凝土构件连接技术是当前装配式建筑中预制混凝土框架连接的一项重要技术,其连接节点的质量会直接影响整个建筑结构的安全性与稳定性[1]。钢筋螺纹连接技术属于混凝土构件连接技术中的一种干式连接技术,其构件通常由工厂预制生产,在现场直接连接,具有更快的连接效率并降低了现场污染[2]。
2025-05-12根据两次试车出现的故障并结合DCS画面振动曲线进行分析,初步判断通过加大各级轴瓦瓦背和瓦架过盈量(原过盈量≤0.05mm),缩小轴瓦和转子轴间隙(原轴瓦顶间隙量≤0.18mm)可以降低转子波动。随后现场技术人员对该机组瓦背过盈量、轴瓦间隙进行调整并再次启动该机组。
2025-05-07程控行车是客车/卡车车架、工程机械涂装车间输送系统的重要设备之一,主要作用是搬运和定位工件,特别是在涂装前处理电泳工艺段用于输送传递大工件产品。程控行车在输送传递的过程中需要移动至多个工艺工位进行工件产品处理,根据应用场景的不同,须采用合理的检测和控制方案,保证程控行车在移动过程中的稳定性和最终定位的准确性。
2024-11-12业财融合已成为提升企业运营效率、优化资源配置、强化风险控制的重要手段。它旨在打破传统的部门壁垒,实现信息共享,提高决策的科学性和时效性。然而,尽管业财融合的观念日益深入人心,但在实际操作中,装备制造企业在业财融合的推进过程中仍存在一些问题。
2024-10-142023年9月7日,习近平总书记在黑龙江省开展的推动东北全面振兴座谈会上首次提到新质生产力,提出“加快形成新质生产力,增强发展新动能”的新要求,并在同年12月的中央经济工作会议和2024年3月的《政府工作报告》中又对新质生产力进行了具体部署。
2024-09-302017年《教育部关于“十三五”时期高等学校设置工作的意见》[4]明确指出,应用型高校主要培养本科以上层次人才,使其具备服务经济社会发展的能力,从事社会发展与科技应用等方面的研究[5],强调应用型人才培养要注重应用性和实践性,构建知识、能力、素质协调发展的育人模式,推进理论教学和实践教学的有机结合[6]。
2024-09-30现阶段在对中国民航大学近机械类本科专业开展教学活动过程中,受学时缩减、师生比例失衡、实践教学严重不足的影响,以及学生对民航领域普遍认识不足的问题,发挥OBE教学理念优势,培养学生学习兴趣,进行“机械制图”课程合理化教学改革,对树立国家标准意识,优化我国工程技术人才培养体系具有重要意义。
2024-09-20随着全球制造业的快速发展和竞争的日益激烈,企业面临着提高生产效率、降低生产成本、提升产品质量等方面的挑战。自动化生产线作为提高生产效率和降低成本的重要手段,受到了越来越多企业的青睐和关注。鉴于此情况,如何通过优化与改进现有的自动化生产线,提升其生产效率、灵活性和智能化水平,成为了制造企业急需解决的重要问题。
2024-09-04近年来,不少学者围绕带式输送机运行状态传感监测、诊断算法和监控系统开展了研究,并取得了一定的进展。然而,带式输送机系统关键部件的早期故障诊断还面临着环境噪声干扰和工况场景多变等问题。迁移学习具备把在源域中学到的知识应用于目标域的能力,有助于提高模型对邻域无标签数据的预测准确率。
2024-09-03随着我国现代化煤矿智能设备的不断升级,越来越多的新技术、新装备投入生产使用,有效促进了智慧矿山的建设。尤其是近年来随着信息化、自动化技术的创新发展,更多科技成果被广泛应用于矿井安全生产,例如带式输送机自动巡检装置、智能化综掘机远程控制系统、煤矸筛选视频监控自动分离系统等先进监控系统更有利于提高生产效率,保障生产安全。
2024-09-02人气:3028
人气:2608
人气:2317
人气:2157
人气:2105
我要评论
期刊名称:机械制造与自动化
期刊人气:1382
主管单位:南京机电产业(集团)有限公司
主办单位:南京机械工程学会,南京机电产业(集团)有限公司
出版地方:江苏
专业分类:机械
国际刊号:1671-5276
国内刊号:32-1643/TH
邮发代号:28-291
创刊时间:1972年
发行周期:双月刊
期刊开本:大16开
见刊时间:4-6个月
影响因子:0.372
影响因子:0.493
影响因子:0.601
影响因子:0.056
影响因子:0.210
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!