91学术服务平台

您好,欢迎来到91学术官网!业务合作:91xueshu@sina.com,站长邮箱:91xszz@sina.com

发布论文

论文咨询

基于微生物-植物协同修复进行镉污染土壤分析的前沿动态

  2020-06-01    734  上传者:管理员

摘要:土壤重金属镉污染是我国亟待解决的环境问题之一。植物-微生物协同修复因其原位、环保、费用低等特点在修复Cd污染土壤方面展现出较好的应用潜力。微生物通过促进重金属胁迫条件下的植物生长,提高植物对土壤Cd污染的修复效率。本文在阐述修复机理的基础上,对近年来国内外学者采用丛枝菌根真菌、根瘤菌和植物内生菌与植物协同的方法修复土壤Cd污染进行的研究进行了综述,并对今后的发展方向进行了探讨。

  • 关键词:
  • 促生作用
  • 修复土壤
  • 协同修复
  • 微生物修复
  • 植物修复
  • 环境生物学
  • 镉污染
  • 加入收藏

我国土壤污染总体形势严峻,2014年发布的《全国土壤污染状况调查公报》显示,全国耕地土壤点位超标率为19.4%,其中,镉污染物点位超标率竟达到7.0%[1,2]。据不完全统计,我国农田Cd污染面积已达2万hm2,Cd含量超标的农产品年产量达14.6亿kg[3],其中稻米中Cd的超标比例高达10.0%,且有日益加重的趋势[4],给居民健康与生态环境带来极大危害。国内外研究者针对土壤Cd污染的修复进行诸多尝试,如客土法、玻璃化法、电动修复法等。这些方法都不同程度地存在着操作费用高、易导致土壤退化、产生二次污染、破坏土壤生物多样性等缺点,因而不适合大范围使用,尤其不适合农业用地使用[5,6]。植物修复-微生物协同修复作为一种相对简单、经济、有效且环境友好的土壤重金属污染生物修复方法,极具发展前景。本文就近年来国内外在植物-微生物协同修复Cd污染土壤方面的研究现状进行综述。


1、镉污染的微生物-植物协同修复机理


微生物-植物协同修复是利用植物及与其相关微生物的作用来去除、转移或者稳定重金属,从而降低土壤中的重金属的浓度或者毒性的过程。镉是一种非必需的剧毒重金属,具有较长的生物半衰期,对大多数生物都有危害。Cd积累在植物体内可以减少植物叶绿素含量、抑制植物光合作用,诱导增加活性氧的形成,导致细胞膜和其他生物分子的氧化损伤,从而抑制植物的生长,影响植物的形态及生理生化代谢过程[7,8]。植物长时间暴露于Cd环境中会表现出生长迟缓,根的伸长和芽的生长的受到抑制,叶片萎黄凋落等。重金属超累积植物则能够通过排斥吸收、主动分泌、限制金属在敏感组织中的分布、限制金属与细胞壁的结合、增强有机分子的螯合作用和液泡的分隔作用等不同的机制来抵抗Cd胁迫,使其能在高度Cd污染的土壤中生长,并且其体内Cd积累浓度能10~500倍于普通植物[7,8]。基于超累积植物的植物修复法,可通过移除并集中处理超累积植物的可收割部分,实现达到降低土壤重金属浓度的目的,Pilon-Smits认为这是一种“经济的、非侵入性”的方法[9]。

我国一些Cd超积累植物种类资源相继被发现和报道,如宝山堇菜;龙葵;球果薄菜;伴矿景天;东南景天等[10]。然而这些超积累植物通常生物量低、生长缓慢、修复周期长,从土壤中吸取Cd受到镉的生物可利用度,土壤pH值,植物的生长阶段等多种的因素限制[11]。

植物的生长及其根际与内生的微生物关系十分密切。镉胁迫可以影响土壤微生物微量金属元素的摄取、酶活性、蛋白质合成、DNA复制和细胞分裂等,进而影响土壤微生物的生存和群落结构。然而,作为地球生物化学循环的重要驱动者,许多微生物进化出忍受高Cd2+浓度的能力。这些微生物与Cd具有很强的亲合性,通过吸附、沉淀、氧化还原作用,可以降低土壤中Cd的毒性[12],与植物共生的微生物还有可能将积累的Cd转移到高等植物中。

研究表明,即使在高浓度的Cd环境下,抗Cd的植物促生菌也能生长和产生吲哚乙酸,IAA对植物细胞分裂分化十分重要,能促进植物生长,进而促进植物产生更大的生物量和更好的Cd吸收效果。印度梨形孢在紫花苜蓿根部定殖时,会分IAA,增加植物产量;P.indica的有效定殖能提高根际微生物活性,并使根部Cd含量增加17.92%~38.55%,地上部分Cd含量减少8.87%~33.16%[13]。PrapagdeeB等[14]的研究则发现,向日葵幼苗在浓度分别为0,25,50和75mg/L的Cd环境下,接种抗Cd的植物促生菌Micrococcussp.MU1时幼苗根增加长度分别为26%,32%,37%和23%,而接种植物促生菌Klebsiellasp.BAM1的幼苗根增加长度分别为68%,43%,40%和21%。刘莉华[15]以龙葵为实验植株,分别接种两株具有较强Cd耐受能力的奇异变形杆菌ProteusmirabilisTL3和ProteusmirabilisDBS2后,龙葵根部Cd含量分别比对照组增加了17.2%和85.6%,且两菌株均能促进植株生长。

表1微生物强化植物修复功能研究的实例


2、丛枝菌根真菌-植物协同修复


菌根是土壤中真菌与高等植物营养根系形成的一种联合体,具有降解污染的能力。其中丛枝菌根真菌不仅能提供土壤和植物根系之间的直接联系,并能够影响植物对矿物质的吸收,受到了大批研究者的青睐。

不同的菌种作用于不同的植物,作用原理不一样,作用效果也会不一样。部分AMF与高等植物根系的相互繁殖,使得AMF菌丝和植物根系的细胞壁滞留下Cd,增强植物对Cd毒性的耐受能力;AMF还具有很强的酸溶和酶解能力,可利用有机酸降低pH值及与Cd结合,达到富集Cd的效果。HuJ在黑麦草上接种两种AMF菌株Glomus caladium 90036和Glomus mosseae M47v,发现Gc和Gm均降低了土壤有效Cd含量21%~38%,而接种Gc的东南景天的Cd的植物提取效率也得到显著提升[21]。贺章咪等[22]以纳米氢氧化镁为化学钝化剂、套种Cd富集植物黑麦草、并接种AMF微生物联合修复菜园土壤Cd污染,AMF菌种分别为摩西斗管囊霉和幼套近明球囊霉。实验结果表明:与对照相比,nMg、nMg+AMF、nMg+黑麦草和nMg+AMF+黑麦草4个处理都能降低萝卜根和地上部Cd含量,分别降低了32.5%~41.4%和13.7%~17.4%;土壤全Cd含量明显降低,降幅为7.3%~17.1%。

而有些真菌则能降低植株对重金属的吸收。罗方舟通过盆栽实验,研究在土壤不同Cd添加水平下,接种丛枝菌根真菌摩西球囊霉,研究其对旱稻生长、Cd吸收累积和根际土壤酶活性的影响。研究发现,接种GM菌能同时降低旱稻对Cd的富集和转运能力,从而显著降低其各部分尤其是籽粒中的Cd含量,降低了26.8%~57.1%[23]。LiH等[24]通过使水稻与两种AMF和Funnelifor mismosseae共生,发现AMF与水稻共生可以使植株地上部和根系的Cd浓度显著降低,而且在高Cd底物上的AMF定殖能降低在植株嫩枝和根部中无机态和水溶性态Cd的浓度和比例,这表明AMF可以将Cd转化为毒性较小的不活跃形式来增强水稻抗镉的能力。

不同的AMF接种到不同的植株,对植株的Cd植物提取效率影响不同。这样会产生两种AMF-植物协同修复方法:一种是AMF促进植株吸收Cd,使得土壤有效Cd含量降低,从而使污染土壤能够重新进行耕作和生产;另一种是在Cd污染土壤上种植对Cd低吸收的农作物,接种AMF增强农作物对吸收Cd的抑制作用,减少Cd在此类农作物中的积累。无论是增强还是减弱,AMF-植物协同修复方法都是我们修复重金属Cd污染土壤的重要方法之一。


3、根瘤菌-植物协同修复


根瘤菌主要指与豆类作物根部共生形成根瘤并能固氮的杆状细菌,其和豆科植物之间互惠共生固氮,是一类重要的微生物。研究发现根瘤菌也有活化土壤中Cd的作用;根瘤菌荚膜外脂多糖能促进金属元素的离子化,金属元素离子化后其生物可利用性会被提升,易被植物富集吸收。娄晨用紫花苜蓿—根瘤菌共生体系来修复镉污染土壤,发现中华根瘤菌CCNWSX002与紫花苜蓿共生结瘤后,根瘤内可以大量积累Cd,使得接菌后紫花苜蓿地下部分富集Cd的能力显著提高[25]。陈雯莉等[26]在红壤和褐土中接种根瘤菌后,发现专性吸附态和氧化锰结合态的Cd含量降低了1~1.5mg/kg,交换态和有机结合态的Cd含量增加了0.4~0.5mg/kg。在Cd污染土壤中,接种根瘤及根瘤内生细菌的刺槐幼苗,其抗氧化酶系统中的过氧化物酶和过氧化氢酶活性增强,而丙二醛含量的降低,能减弱Cd对植物膜系统的损伤,起到保护植物、提高植物抗性作用;且HZ76、HZ10+HZ76、HZ6+HZ10+HZ76处理的结瘤数量显著增加,为不接菌处理的3.86、4.85、4.14倍;刺槐的株高、根长,地上与地下干重、氨态氮、硝态氮及叶绿素含量整体呈现增加趋势[27]。Sriprang等[28]通过重组将编码植物鳌合肽的基因转入华库根瘤菌株Mesorhizobium huakuii subsp rengei B3中,重组华库根瘤菌株在离体单独培养时与对照相比Cd2+的吸收增加了9~19倍,当将其接种到拟南芥上形成共生体后,根瘤中Cd的含量增加1.5倍。


4、内生菌-植物协同修复


植物内生细菌是指从表面消毒的植物组织中分离得到或从植物内部获得的、能够定殖在健康植物的各种组织和器官内,并未使植物的表型特征和功能发生改变的细菌。植物内生菌包括内生真菌、内生细菌和内生放线菌等,而内生菌系统分布在植物体根、茎、叶、花、果实和种子等器官、组织的细胞或细胞间隙等多处。从龙葵中分离出来的内生菌具有提高植物重金属修复能力的巨大潜力:在龙葵的根、茎、叶中曹喆等[29]发现了7株耐Cd毒性,可吸收Cd的芽孢杆菌,分别命名为SDE01-07,其中SDE06在初始Cd2+浓度为20mg/L、pH6.0、温度37℃下,培养36h,对Cd2+的去除率达80.2%;Luo[30]采用栽培相关技术,从龙葵根、茎和叶中分离出四类耐Cd细菌内生菌和Firmicutes,分离物在Cd胁迫下,根系干重从55%增加到143%,地上干重从64%增加到100%,能抑制Cd的植物毒性,而且接种植株后,龙葵根部的Cd累积量从66%增加到135%,地上部分积累量也从22%增加到64%;GuoH等[31]从龙葵中分离出的内生枯草杆菌菌株L14,在重金属毒性的刺激下,其ATP酶异常活性增强,能够通过输出阳离子提供能量,帮助EBL14降低Cd的毒性,使其对Cd2+的吸收率达到75.78%。接种内生菌后的植物能通过增强吸收植物示踪元素锌和铁来降低Cd的毒性,增强植株在高浓度Cd环境下的存活能力,提高植物Cd修复能力。Mastretta等[32]从烟草种子中分离出的具有Cd抗性内生菌.,研究发现与未接种的植物相比,接种内生菌对植物的生长有积极影响,可提高植株在Cd胁迫条件下的生物产量;ChenL等[33]把功能内生假单胞菌接种到超积累植物龙葵上,研究发现LK9能改善土壤铁磷矿质营养供应,提高土壤重金属有效性,影响宿主介导的低分子量有机酸的分泌,与未接种对照相比,龙葵茎干生物量增加14%,龙葵中Cd总量提高46.6%,Cd的植物提取率达到17.4%。内生菌在促进植物生长的同时也改善植物对矿物质的利用率,从而达到与植物联合修复Cd污染问题的目的。接种内生菌后,内生菌能富集并积累一定量的重金属,减轻重金属对植物的毒性。KerenW发现一种新的内生细菌,能成功地在植物长根期和成熟期内定殖。在Cd处理过的超积累植物东南景天植株上接种SaSR13后,其地上部和根部生物量分别提高39%和42%,Cd含量分别减少32%和22%,植株叶绿素含量增加38%;接种后东南景天中吲哚-3-乙酸浓度的增加,超氧阴离子浓度的下降;此外接种SaSR13可促进东南景天根的发育长度,促进根系分泌物特别是苹果酸和草酸的释放,促进植株对Cd的吸收[34]。


5、研究展望


近年来,重金属污染物、微生物和植物之间的相互作用已经引起人们关注。植物-微生物协同修复就是将植物和与其相关的微生物综合考虑,充分发挥各自的优势,直接或间接地吸收、转化土壤中的重金属元素。植物的生长对周围环境会产生一定的影响,其根系为微生物提供了更好的营养条件,保证微生物群数量和活性,维持良好的生存环境和微生物群落多样性;反过来旺盛生长的根际微生物会通过分泌更多的有机酸、铁载体、生物表面活性剂等方式来提高根际环境中重金属Cd的生物有效性,从而提高植物修复的效率[35],这种协同修复较于单一超富集植物修复,效果更显著,是未来的重要发展方向。但目前的研究更多停留在对修复效果的关注上,而对于植物-微生物之间的相互影响和相互作用的分子机制还有待进一步研究。同时,如何构建微生物和植物的重金属污染高效修复模式,最大程度缩减进程,提高修复效率,降低修复成本,以及如何处置重金属富集后的植物等问题还有待我们进一步探讨。


参考文献:

[1]倪中应,谢国雄,章明奎.镉污染农田土壤修复技术研究进展[J].安徽农学通报,2017,23:115-120.

[2]李婧,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报,2015,21:104-107.

[3]刘洋,张玉烛,方宝华,等.栽培模式对水稻镉积累差异及其与光合生理关系的研究[J].农业资源与环境学报,2014:450-455.

[4]熊婕,朱奇宏,黄道友,等.南方稻田土壤有效态镉提取方法研究[J].农业现代化研究,2018,39:170-177.

[10]王永平,杨万荣,廖芳芳,等.镉低积累作物筛选及其与超富集植物间套作应用进展[J].广东农业科学,2015,42:92-98.

[12]易泽夫,余杏,吴景.镉污染土壤修复技术研究进展[J].现代农业科技,2014:251-253.

[13]主朋月,韩冰,王晓阳,等.印度梨形孢联合紫花苜蓿修复土壤镉污染研究[J].环境科学与技术,2019,42:21-27.

[15]刘莉华,刘淑杰,陈福明,等.两株镉抗性奇异变形杆菌对龙葵修复镉污染土壤的强化作用[J].环境工程学报,2013,7:4109-4115.

[17]黄文.产表面活性剂根际菌协同龙葵修复镉污染土壤[J].环境科学与技术,2011,34:48-52.

[19]胡振琪,杨秀红,高爱林,等.镉污染土壤的菌根修复研究[J].中国矿业大学学报,2007,36:281237-240.

[22]贺章咪.纳米氢氧化镁—黑麦草—丛枝菌根真菌联合修复土壤对萝卜Cd含量的影响//中国园艺学会.中国园艺学会2018年学术年会论文摘要集[C].中国园艺学会:中国园艺学会,2018:1.

[23]罗方舟,向垒,李慧,等.丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响[J].农业环境科学学报,2015,34:1090-1095.

[25]娄晨.纳米材料-紫花苜蓿-根瘤菌复合体系对镉污染土壤修复技术的研究[D].杨凌:西北农林科技大学,2016.

[26]陈雯莉,黄巧云,郭学军.根瘤菌对土壤铜、锌和镉形态分配的影响[J].应用生态学报,2003,14:1278-1282.

[27]沈建秀.接种根瘤菌后刺槐对镉胁迫的响应[D].杨凌:西北农林科技大学,2017.

[29]曹喆,罗胜联,曾光明,等.一株龙葵内生细菌SDE06去除Cd2+的实验[J].微生物学通报,2009:328-333.

[35]李韵诗,冯冲凌,吴晓芙,等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报,2015,35:6881-6890.


石浩,彭安安,余春沐.镉污染土壤的微生物-植物协同修复研究进展[J].广州化工,2020,48:36-39.

基金:佛山科学技术学院大学生创新创业训练计划项目.

分享:

91学术论文范文

相关论文

推荐期刊

网友评论

加载更多

我要评论

生物资源

期刊名称:生物资源

期刊人气:707

期刊详情

主管单位:中华人民共和国教育部

主办单位:武汉大学,武汉科学技术情报中心

出版地方:湖北

专业分类:生物

国际刊号:2096-3491

国内刊号: 42-1886/Q

邮发代号:38-309

创刊时间:1975年

发行周期:双月刊

期刊开本:大16开

见刊时间:10-12个月

论文导航

查看更多

相关期刊

热门论文

推荐关键词

【91学术】(www.91xueshu.com)属于综合性学术交流平台,信息来自源互联网共享,如有版权协议请告知删除,ICP备案:冀ICP备19018493号

400-069-1609

微信咨询

返回顶部

发布论文

上传文件

发布论文

上传文件

发布论文

您的论文已提交,我们会尽快联系您,请耐心等待!

知 道 了

登录

点击换一张
点击换一张
已经有账号?立即登录
已经有账号?立即登录

找回密码

找回密码

你的密码已发送到您的邮箱,请查看!

确 定