摘要:在很多领域中都应到了运动力学,即对物体的运动规律的研究,机械结构设计的应用体现更为显著。基于以上原因,对机械结构的设计特点及设计要素进行了阐述,并对运动力学在机械结构设计中的应用准则展开了探讨,对于运动力学在机械结构设计中的具体应用进行了深入研究。
加入收藏
机械结构设计是一项复杂的工作。运动力学对机械结构设计具有理论指导作用。在机械结构设计不断创新的背景下,研究人员也在深入研究运动力学理论,以此希望优化机械结构设计,提升机械结构设计质量。
1、机械结构设计特点及设计要素
1.1 机械结构设计特点
机械结构设计具有以下特点:一体化设计。机械结构设计思考、绘图、计算等工作是统一的、紧密相连的。这就意味着机械结构设计的工作量比较大,出现的问题比较多,设计人员若想保证机械结构设计的质量,就要深入探讨整个机械结构设计过程,尽可能地保证每一个设计环节都能准确、完善。涉及的问题比较多,且具有复杂、多解的特征。比如,对于同一个设计,可以制定多个设计方案。作为设计人员,应充分发挥自身的主导作用,从中选择最佳的设计方案,保证机械结构设计的质量。活跃性最强。在机械设计中,需要对方案不断地修改、优化、完善,以满足设计要求。这一过程是非常繁琐、复杂的。
1.2 设计要素
在机械结构设计中,必须要考虑各种设计要素,保证机械结构设计符合要求。但是,设计人员也应当充分认识到,在机械结构设计中,涉及的理论、技术要素非常复杂,需综合考虑各种影响因素,保证机械结构设计方案的合理性。首先,在机械结构设计中要考虑几何要素。相对来说,机械结构设计是一项非常精密的工作,各部分之间的咬合、位置、距离都需要经过精心设计。在这一过程中,必须要考虑几何要素、科学设计机械零部件的面,并充分考量各零部件的接触设计。其次,在机械结构设计中要充分考虑联结要素。设计人员不仅要对单个零件的设计进行分析,更要充分考虑不同零件之间的联接问题,尤其要科学地设计不同零部件之间的功能面联接方法。另外,在机械结构设计中,不同零部件之间的联接包括直接联接、间接联接两种。在直接联接的设计中要充分考虑其功能面之间的缝隙问题,确保功能面之间的摩擦力最小,在间接联接中则要充分考虑联动轴设计。最后,材料要素。材料选择对机械结构设计的影响非常大,尤其是在一些易磨损的部位,必须要选择耐磨损、质量好的零件,保证机械设备的运行效率。
2、运动力学在机械结构设计中的应用准则
2.1 满足力学设计要求
满足力学设计要求,具体来说,是在机械结构设计中充分考虑弹性力学、疲劳力学等力学准则,以便提升机械结构设计的科学性。其中,疲劳力学与轴承、齿轮、轴的使用寿命有着密切的联系。在具体设计中,设计人员需要充分考虑机械零部件的荷载变化,并灵活处理力学计算结果,优化产品结构,延长机械产品的使用寿命。同时,在这一过程中,设计人员还需充分考虑零部件截面尺寸的变化,保证其内应力能灵活变化、各截面强度能相等。这样就可保证材料能得到充分利用。如在阶梯轴、悬臂支架的结构设计中,其截面强度都是相等的。阶梯轴、悬臂支架的结构设计如图1所示。
图1阶梯轴、悬臂支架的结构设计
2.2 不断创新设计理念
就目前来看,大部分机械结构设计多应用机械结构设计变元法,即对机械结构设计的相关要素进行优化、筛选,保证能将最新的设计理念、方法应用到机械结构设计中。所以,在现代化背景下,要继续加大机械结构设计理念的创新,不断优化机械设计方法。
2.3 积极引入新材料
随着我国科学技术的发展,新材料、新工艺不断出现。在这一背景下,设计人员更要尝试引入新材料,并依据新材料特性优化机械结构设计,从而保证能充分发挥新材料的优势,提升机械结构质量,延长机械结构的使用寿命。尤其是充分考虑新材料的力学性质,深入优化机械结构设计的每一个环节[1]。
3、运动力学在机械结构设计中的具体应用
3.1 应用步骤
运动力学应用是一个系统性的工程,涉及的要素、环节非常多,需要机械结构设计人员充分掌握运动力学基本理论,并在此基础上进行机械结构设计的论证、实验,从而选出最优的机械结构设计方案。其具体应用步骤包括:
首先,整体分析运动力学设计策略。在应用运动力学时应当从整体入手,确定设计策略,而后再进行分支应用模型的构建。这样可以规范、有效地应用运动力学。在形成整体策略时,设计人员应先充分考虑运用整体策略想要达到的目的,并形成一个比较模糊的设计概念。需要注意的是,对于精密度要求比较高的机械结构设计,还需充分应用微积分计算、模糊计算等运算方法,将运动力学灵活应用到机械结构设计中。这样,设计人员就可以基本确定机械结构尺寸、占用空间。随后,就可以科学地选择应用材料,并分析机械结构在运动中发生的参数变化情况。
其次,确定机床结构。对于重要零部件的设计应当在图纸上给出理论阐述,在实际组装中保证其能顺畅对接。实现这一目标的前提是科学设计机床结构,因为机床是制作各种关键零件的主要工具,科学设计其结构可以保证重要零部件的设计、制作质量,还可以在冲压过程中对重要零部件进行力学分析,并通过适当地改变机床结构,进行重要零部件结构力学的试验。在这一过程中,设计人员还应当保证设计图纸与实物对应,避免实物存在偏差,无法完成预期设计目标的现象。
再者,应当合理设计机械结构各部件及总体结构形式功能。对机械总体结构、形成、机器功能进行设计,充分彰显出运动力学在机械结构设计中的应用优势,并保证机械结构部件功能、性质等在较小物理碰撞下仍能正常运行。比如机械结构设计空间较小,可通过设计使部件更换变得更加简单、方便。以齿轮、皮带等损耗性部件为例,应当在保证其机构合理的前提下,用小齿轮代替皮带,这样可延长机械结构的使用寿命。另外,在这一过程中还应充分考虑运动力学理论,合理设计机械运动方式。
最后,应结合运动力学理论,进行机械结构设计结算,对其结械结构进行优化。设计人员一定要充分掌握相应的计算方法,如可编程逻辑控制器(ProgrammableLogicController,PLC)、数控系统、运动控制对应的逻辑算法。以N轴联动机械手算法为例,设计人员应当充分计算臂关节、轴关节等所遵循的运动方程,并结合弹性力学、流体力学等,考虑各关节所承担的任务,并以此为基础确定其设计形状,然后结合热变形、受力情况等因素确定形状、位置、尺寸。
3.2 运动力学在零部件链接中的应用
机械结构包含的零部件非常多,且不同零部件之间的链接方式并不相同。不同链接方式的作用、效果也是不相同的。所以,设计人员应当充分依据运动力学理论,科学确定不同零部件之间的链接方式,以免零部件的链接方式不正确,导致机械结构整体功能无法发挥。
如在机械结构设计中,需要考虑观测力矩变化,计算不同联接点之间的摩擦力、压力,从而选择零部件的链接方式。一般来说,每个零部件至少有两个与其相连的零部件。在考虑其链接方式时,需认真分析其材料热处理方式、尺寸、精度、表面质量等。同时,还需计算其联结精度、尺寸等。需要注意的是,随着其关联零部件个数的增多,其结构就越复杂,精度就越高。设计人员应从大局出发,考虑各种影响因素。
3.3 在零部件损耗中的应用
机械结构的零部件非常多,且所有零部件都能顺畅对接。在机械结构的运动中,各零部件也会运动。并且,在相互运动中,零部件会发生摩擦,出现损耗。最重要的是这种损耗是无法杜绝的。所以,设计人员只能结合运动力学理论,尽量减缓零部件之间的损耗,延长机械结构的使用寿命。
具体来说,要结合零部件的运动情况、运动力学理论,精确计算零部件结构的损耗情况,并确定其损耗系数,然后从零部件材料、保养等方面入手,降低零部件结构的损耗。这种方法在精密度比较高的机械结构中应用最为广泛。以往复式活塞隔膜泵的曲柄滑块机构为例,若其零部件出现磨损,可建立含间隙隔膜泵磨损故障时的动力学分析模型,并结合力学特性,对其磨损故障进行非线性分析,然后再通过计算其动力学方程,得到其磨损部件运动的结论。接下来,在此基础上制定针对性的故障处理、保养措施。总之,运动力学在机械结构零部件的损耗中也有着非常广泛的应用[2-3]。
4、结语
运动力学理论知识对机械结构设计有着非常重要的指导作用,设计人员应当充分了解运动力学理论知识,并依据相应的准则开展机械结构设计。同时,还应按照一定的步骤进行机械设计,最重要的是要在零部件链接、零部件损耗中应用运动力学理论知识,指导其设计工作。
参考文献:
[1]陈冲.运动力学在机械结构设计中的应用[J].赤峰学院学报:自然科学版,2017,33(19):62-64.
[2]乔栋.解析运动力学在机械结构设计中的应用[J].绿色环保建材,2016(8):59.
[3]胡晓芳.解析运动力学在机械结构设计中的应用[J].山东工业技术,2015(16):258.
宫立忠.探讨运动力学在机械结构设计中的应用[J].现代盐化工,2020,47(1):62-63.
分享:
气动伺服弹性是一门涉及空气动力学、结构动力学和控制理论的交叉学科,目前在航空领域与该学科有密切关联的研究为颤振主动抑制和阵风减缓[1,2]。而随着现代大型民机的柔性不断增加,导致阵风载荷的危害剧增,使得阵风载荷的主动抑制研究成为一种新的趋势[2]。
2020-08-10随着经济全球一体化的深入发展,高等教育国际化已成为一种必然趋势。为应对新时代对工科人才培养提出的高要求,国家适时提出了新工科建设,并在高校开展了工程教育专业认证工作。在新时代的背景下,作为传统的工科专业课程,理论力学在课程教学中也需要紧跟时代节奏,更新与改革迫切。
2020-08-10新工科是为适应人工智能、全智能时代,响应国家《中国制造2025》等战略需求,培养实践能力强、创新能力强、具备国际竞争力的高素质复合型人才,高等工程教育承担的职责与使命。“新工科”这一概念自2016年提出以来,在不到一年的时间里,教育部组织高校进行深入研讨,形成了“复旦共识”和“天大行动”[1]等,由此可以看出国家对新工科发展的全局考量。
2020-08-10“理论力学”课程是高等工科学校的技术基础课,是连接基础理论课与工程专业课的桥梁。课程的任务是使学生掌握质点系和刚体机械运动(包括平衡)的基本规律及其研究方法,为学习有关的后续课程打好必要的基础,初步学会应用理论力学的理论和方法分析解决一些简单的工程实际问题,同时结合课程的特点,培养学生的辩证唯物主义世界观,以及分析问题和解决问题的能力。
2020-08-10理论力学、材料力学课程是军队院校相关专业本科学员必修的专业技术基础课程,是连接基础知识和武器装备专业知识的桥梁。其具有双重属性,既有基础性的特点,理论经典、逻辑严谨、论证严密,又有应用性的广泛,能紧密联系实际,解决工程实际问题。正是由于课程的理论经典,且具有通用性,大部分教材列举的实例均是通用型例子。
2020-08-10理论力学是一门理论性较强的专业技术基础课。它是研究力学中最普遍、最基本的规律,是后续力学课程的重要基础[1]。受力分析是理论力学教学中极其重要的教学内容,是学好其它力学课程的根基。倘若这部分内容掌握不好,就不利于后续理论力学内容和其它力学课程的顺利学习。
2020-08-10理论力学是一门理论性较强的专业技术基础课。它是研究力学中最普遍、最基本的规律,是后续力学课程的重要基础[1]。受力分析是理论力学教学中极其重要的教学内容,是学好其它力学课程的根基。倘若这部分内容掌握不好,就不利于后续理论力学内容和其它力学课程的顺利学习。受力分析在中学和大学物理课程中已经学习过,学生有些基础。
2020-07-08大气动力学是气象学的一个分支,是应用物理学定律和数学方法研究天气和气候中与大气运动有关的现象,从理论上探讨大气环流、天气系统演变和其它大气运动过程的学科。该课程是本科阶段大气动力学(动力气象学)课程的后续课程,侧重于基础理论扩展和对更复杂的强迫耗散系统及非线性系统问题的讨论。
2020-06-04前人研究已揭示了封闭体系适用于Ⅲ型烃源岩,而Ⅰ、Ⅱ型烃源岩生烃特征研究时采用开放体系更为合理[2]。开放体系下生烃动力学研究方法是一种描述烃源岩生烃特征的有效方法,根据开放体系下烃源岩的生烃模拟试验结果,可获得动力学参数(活化能和指前因子),这两个参数可反映出烃源岩生烃的难易程度[3]。
2020-06-01土木工程不断地为人类社会创造崭新的物质环境,尤其是经历了近代工业技术革命的洗礼后,其便逐渐形成了一个比较完善的现代工程建设体系。随着土木工程项目的日益增多,生活中的建筑施工、道路工程、高铁项目等都可将其看作土木工程的内容。在这一过程中,土木工程施工的内容也日益丰富,项目工程的前期勘测、施工准备、技术选择、质量把控等都成为其实现的重要环节。
2020-05-29人气:8133
人气:7781
人气:6601
人气:6051
人气:4830
我要评论
期刊名称:力学学报
期刊人气:2873
主管单位:中国科学院
主办单位:中国科学院力学研究所
出版地方:北京
专业分类:科学
国际刊号:0459-1879
国内刊号:11-2062/O3
邮发代号: 2-814
创刊时间:1957年
发行周期:双月刊
期刊开本:大16开
见刊时间:一年半以上
影响因子:0.963
影响因子:1.730
影响因子:0.542
影响因子:0.744
影响因子:1.028
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!