摘要:重叠延伸PCR是基因定点突变的主要方法,但是以该方法制作长基因定点突变时,往往遇到难以获得第二轮PCR产物或容易引入新的非预期突变等问题。此时,可先以重叠延伸PCR扩增含突变位点的部分基因片段,再将其连入适当载体获得重组质粒。若该扩增片段两侧的酶切位点在质粒载体上不单一,则可采用双片段连接法构建完整质粒。以制作视网膜母细胞瘤基因S780E定点突变为例,直接以重叠延伸PCR扩增全长基因时未能得到理想的目标产物。故先扩增含点突变的F3片段,再将其与源自原始质粒的F2片段一起连入含F1片段的质粒载体而构建完整质粒。两个筛选出的重组质粒经序列检测完全符合目标突变序列特征,验证了该方案的可行性。该方法作为重叠延伸PCR的补充,可为许多长基因定点突变提供解决方案。
加入收藏
基因定点突变是常用的分子生物学技术,是蛋白质结构与功能研究的基础手段。目前基因定点突变主要采用基于聚合酶链式反应的突变引入办法。最早开发出来的重叠延伸PCR是基因突变的主要方法[1],近年来还发展出大引物法与滚环扩增法等定点突变方法[2,3]。这些方法各有优劣,不同实验室在选择基因定点突变方法时有所偏好。
OE-PCR包括两轮扩增,第一轮PCR分别扩增基因上、下游片段,第二轮PCR通过上、下游片段的末端重叠延伸产物作为模板扩增全长基因[4]。很多科研工作者都有类似的经验,即上、下游片段较小时,第二轮PCR容易成功;随着上、下游基因片段长度增加,第二轮PCR成功率逐渐降低;当某一片段超过2kb时,第二轮PCR不易获得目标产物。一般认为是较长的基因片段干扰了上、下游片段的末端互补所致。另一方面,PCR体外扩增DNA时总是存在随机突变的可能,而且随着目标产物长度增加,随机突变的概率也逐渐增加。由于以上两点,OE-PCR在制作长基因定点突变时往往并不顺利。因此,在遇到相应问题时,有科研工作者会转向滚环扩增法。滚环扩增法也是目前市场上大多数突变试剂盒所采用的基本原理,如NEBQ5、StratageneQuikChange及碧云天QuickMutation基因定点突变试剂盒等[5,6,7]。然而,滚环扩增法也存在固有缺陷:其一,PCR扩增7–12kb质粒依赖于高保真、快速且稳定的DNA聚合酶,否则无法得到目标产物或容易引入随机突变;其二,若DpnⅠ酶未能对模板质粒做彻底消化,则会严重干扰目标突变质粒的筛选。尽管所有试剂盒厂商都声称其所含上述两酶都满足要求,但随着试剂盒使用和存储时间增加,不可避免的酶活性降低就会极大地影响基因突变的效率。其三,滚环扩增法还会使目标质粒载体序列部分出现突变的风险,因为这部分序列经过了PCR扩增,但一般不会测序确认。
我们发现一般较长的基因内往往含有较多常见的限制性酶切位点。对于突变位点两侧有合适酶切位点的基因突变,仍可采取OE-PCR法扩增其两侧酶切位点之间的部分序列,再将其连入适当载体即可获得重组质粒。若这两个酶切位点在质粒序列上并不单一,则可以采用双片段连接法,利用恰当的片段组合,亦可得到完整的目标质粒。
视网膜母细胞瘤基因(Retinoblastomagene1,rb1)是典型的抑癌基因[8],rb1基因缺失与突变是众多肿瘤发生的重要诱因[9]。rb1基因转录终产物约4.7kb,其开放阅读框全长2787bp,编码928个氨基酸。在细胞周期的G1期,Rb1蛋白相继被cyclinD1/CDK4与cyclinE/CDK2磷酸化,释放与之结合的E2F,从而启动G1/S转换[10,11,12]。Rb1蛋白C端有数个CDK潜在磷酸化位点,其中大多受cyclinE/CDK2修饰,唯有780Ser是较为可信的CDK4磷酸化位点[13,14],将Rb1蛋白780Ser(S)突变为780Glu(E)可模拟其磷酸化修饰效果,进而研究其调节机制[15]。由于rb1基因编码区较长,常规OE-PCR制作rb1S780E突变体时遇到困难。采用部分扩增与双片段连接法相结合,成功克隆了rb1S780E突变体并将其连入质粒载体,为进一步研究该基因的调节机制做好了基础准备,同时也提供了一种有效的长基因定点突变解决方案。
1、材料与方法
1.1菌种与质粒
大肠杆菌DH5α感受态购自天根生化科技(北京)有限公司;pEGFP_C3-rb1质粒由北京大学生命科学学院张传茂教授馈赠。
1.2试剂
2×EasyTaqPCRSuperMix购自北京全式金生物技术有限公司;PyrobestDNAPolymerase、DNALigationKitVer.2.1购自TaKaRa;EcoRⅠ、MluⅠ、NheⅠ、SalⅠ购自NEB;DNA回收试剂盒、质粒小量抽提试剂盒购自杭州博日科技有限公司。
1.3引物设计与合成
引物采用PrimerPremier5.0软件设计,由北京天润奥科生物科技有限公司合成,经PAGE纯化。引物序列见表1。
1.4基因克隆
扩增含突变位点的目标基因采用高保真PyrobestDNAPolymerase。方案如下:总体积20µL,含14.3µLddH2O,2µL10×缓冲液,3µLdNTPs,0.2µL上游引物/0.2µL下游引物,0.2µL酶,0.1µL(10ng)质粒;运行程序:94℃5min;94℃30s,54℃30s,72℃3min,30个循环;72℃10min。第二轮PCR方案:总体积20µL,含13.4µLddH2O,2µL10×缓冲液,3µLdNTPs,0.2µL上游引物/0.2µL下游引物,0.2µL酶,0.5µL上游片段/0.5µL下游片段;运行程序:94℃5min;94℃30s,54℃30s,72℃3min,30个循环;72℃10min。PCR产物经电泳检测后回收至20μLddH2O中。酶切方案:取PCR回收物17µL,加2µL10×缓冲液,0.5µLNheⅠ/0.5µLSalⅠ;另取pEGFP_C3-rb1质粒3µg稀释到17µLddH2O中,加2µL10×缓冲液、0.5µLNheⅠ/0.5µLEcoRⅠ;取pEGFP_C3-rb1质粒1µg稀释到17µLddH2O中,加2µL10×缓冲液,0.5EcoRⅠ/0.5µLSalⅠ;37℃2h。电泳检测后将目标片段回收至20µLddH2O中,用DNALigationKitVer.2.1连接:载体0.5µL,两个片段各3.5µL,solutionⅠ7.5µL混合,16℃30min。连接产物直接转化感受态大肠杆菌,然后涂布在含卡那霉素的LB固体培养基平板上,37℃培养过夜。
1.5菌落检测与序列分析
在过夜培养的平板上随机挑取数个成型菌落,置于4mL含卡那霉素的LB培养基中继续培养6h,以菌液为模板进行PCR检测。方案:5µL2×SuperMix,0.1µL上游引物/0.1µL下游引物,0.8µL菌液,补水至10μL;扩增条件为:94℃5min;94℃30s,54℃30s,72℃1min,30个循环。另对部分克隆取3mL菌液小量提取质粒进行酶切检测,方案为:12.5µLddH2O,2µL10×缓冲液,0.5µL内切酶,5µL小提质粒;37℃2h。PCR产物及酶切产物皆经1%琼脂糖凝胶电泳分析。取2个经验证的阳性质粒进行序列测定,质粒测序由北京天润奥科生物科技有限公司完成。
表1本研究所用引物
2、结果与分析
2.1不同方案下目标突变体的扩增
欲制作rb1S780E定点突变,需将rb1基因编码区2338–2339位“TC”突变为“GA”。考虑到该基因较长,采用常规OE-PCR法可能不易得到理想的第二轮PCR产物。对rb1作限制性酶切分析,发现目标突变位点S780E上游470bp处有一个NheⅠ位点,另上游1438bp处有一个EcoRⅠ位点(图1A)。因此,可以仅对rb1_F2(900–2787)或rb1_F3(1968–2787)部分做OE-PCR扩增,再利用NheⅠ或EcoRⅠ酶切位点将该片段连入载体构建完整的突变体质粒。为寻找最佳解决方案,依上述思路按OE-PCR定点突变法进行对比操作。
以原始质粒pEGFP_C3-rb1为模板,分别以S0、S1、S2搭配780E_A为引物扩增上游片段,以780E_S/pEGFP_C3′为引物扩增下游片段。PCR产物经电泳检测,得到4个预期大小的DNA片段(图1B)。在第二轮PCR时,发现上游片段a与下游片段d组合未能扩增出全长rb1,上游片段b与下游片段d组合扩增出的产物主带不明,且杂带较多;而上游片段c与下游片段d组合扩增出预期的目标产物片段。经多次调整PCR反应条件,仍未能得到理想的全长rb1产物及F23片段。以上结果说明OE-PCR时较长片段不易重叠延伸而扩增出目标产物,与经验相符。
2.2目标质粒的双片段连接
理论上,将上述#3产物以NheⅠ/SalⅠ双酶切即可得到rb1_F3片段,再连接到切除对应片段的载体即可得到完整的突变体质粒。然而,限制性酶切分析发现原始质粒多克隆位点上游还有另一个NheⅠ位点,因此F3片段无法直接与载体连接得到目标质粒。尽管如此,可采用双片段连接法解决上述问题。即以NheⅠ/EcoRⅠ双酶切原始质粒获得rb1_F2(900–1968)片段,以NheⅠ/SalⅠ双酶切#3PCR产物获得F3片段,将上述两个片段一起与经EcoRⅠ/SalⅠ酶切的质粒载体部分连接,从而得到完整目标质粒(图2)。
图1OE-PCR扩增含突变位点的基因片段
上述#3PCR产物双酶切简单易行(图3a泳道)。将原始质粒以NheⅠ/EcoRⅠ双酶切,得到1068bp、1662bp、4773bp三个片段,其中最小的片段即所需的F2片段,它与1622bp片段相距较远,容易分离回收(图3b泳道)。将原始质粒以EcoRⅠ/SalⅠ双酶切可得到1888bp、5615bp两个片段,其中大片段即所需的载体部分(图3c泳道),它含有rb1_F1(1–900)部分。
图2双片段连接示意图
图3基因片段及载体的限制性酶切
2.3目标质粒的检测与鉴定
连接产物转化感受态大肠杆菌后经卡那霉素选择性平板培养基筛选,得到数十个菌落(图4A),明显少于本实验室单片段连接时的菌落形成数[16]。从中任意挑取8个菌落,经适当培养后进行检测、鉴定。以两种不同的引物组合进行PCR检测,方案一选用S2/780E_A引物组合;阳性结果表示质粒含有rb1基因后半部分(图4B)。检测得到#1、#4、#5三个阳性克隆,其产物大小约500bp,与预期(514bp)相符(图4C)。方案二选用780E_S/pEGFP_C3′引物组合;阳性结果表示质粒为pEGFP_C3载体,且含有rb1后半部分。该方案检测结果与方案一一致,其产物大小约400bp,与预期(421bp)相符(图4D)。为进一步确认检测结果的可靠性,对#1–5号克隆提取质粒作酶切检测。分别以MluⅠ与NheⅠ作单酶切检测,结果显示#1、#4、#5这3个质粒能切出预期片段,而#2、#3号质粒无预期片段(图4E,F)。酶切检测结果与PCR检测结果一致。
为鉴定目标质粒序列准确性,对其中#1、#4阳性质粒进行序列测定。由于经PCR扩增的F3片段位于基因下游,且目标突变位点S780E距下游SalⅠ位点仅490bp,故选择pEGFP_C3′引物对该质粒反义链进行序列测定。结果显示两者目标位点为TC碱基,且F3部分序列内未引入其他非预期突变点(图5)。表明其正义链对应位置为GA碱基,符合预期的rb1S780E突变体序列特征。由于目标质粒其他部分未经PCR扩增,故未作序列测定。综合分析,#1、#4克隆皆是符合要求的pEGFP_C3-rb1S780E目标突变体。
图4阳性克隆的筛选
图5阳性质粒的关键序列
3、讨论
长片段干扰重叠延伸效率是制约OE-PCR应用于长基因定点突变的重要因素;另一方面,制作长基因突变体时,往往得到了预期定点突变,却引入了新的非预期突变(图6A)。滚环扩增法在一定程度上可以解决长基因定点突变的问题,但其也存在其他固有缺陷。若仍以OE-PCR制作长基因定点突变,则仅扩增含突变位点的部分基因序列成为克服上述困难的良好解决方案。一则OE-PCR扩增较短的基因片段成功率较高,二则扩增短基因片段时引入非预期突变的几率相对较小(图6B)。
采取部分扩增结合酶切-连接法制作长基因定点突变要求突变位点两侧附近皆有合适的酶切位点,以便于将扩增的基因片段重新连入载体获得完整目标质粒。最理想的情况是其两侧附近各有一个单一酶切位点,此时按常规基因克隆方法即可重新连接得到完整目标质粒。然而往往遇到另外一种情况,即突变位点两侧虽有酶切位点,但它们在目标质粒上并不单一。如本例中目标位点S780E上游虽有一个NheⅠ位点,但载体序列本身还有另一个NheⅠ位点。若以NheⅠ/SalⅠ酶切原始质粒再连接扩增基因片段,则目标质粒将丢失rb1基因上游大部分序列。对于这种情况,双片段连接法是一个很好的解决方案:本例中两个片段同时与一个载体连接的办法成功避开了双NheⅠ位点对片段连接的限制(图2)。该方案所获得的完整质粒中基因上游F1部分与中部F2皆源自原始质粒,一般认为序列忠实,不会出现新的突变(图6B)。唯一存在随机突变可能的只有经PCR扩增的F3部分,只对这部分DNA进行序列测定即可判断目标质粒的准确性。
图6常规OE-PCR与部分扩增法的比较
结合实际工作经验,我们发现相对常规单片段连接方案,双片段连接时得到的转化克隆数较少,且阳性率偏低;调整连接体系中两片段和载体的比例可适当提高转化克隆数。本例中平板上只形成数十个菌落,检测阳性率只有37.5%,都低于本实验室常规方案下的经验值。尽管如此,若常规OE-PCR难以解决某些长基因定点突变问题时,本方法不失为一种有效的解决方案。
参考文献:
[1]赵松子,沈向群.用滚环扩增与大引物PCR法高效构建定点突变序列.江西农业学报,2009,21(8):7-8,11.
[4]杨林,王柳月,李慧美,等.改进的多片段重叠延伸PCR制作基因多位点突变.中国生物工程杂志,2019,39(8):52-58.
[5]唐仕伟,李辉,崔时媛,等.新型酵母蛋白表位标记和基因敲除质粒系统的构建及可行性验证.微生物学报,2019,59(5):939-949.
[8]刘双虎,王守志,张慧,等.视网膜母细胞瘤基因1(RB1)研究进展.遗传,2010,32(11):1097-1104.
[9]杜琴,江悦华,GalliBL.Rb1基因第24和25外显子缺失导致低外显性视网膜母细胞瘤.中华医学遗传学杂志,2002,19(5):370-374.
[16]王柳月,李慧美,马梦琪,等.利用旁侧引物提高重叠延伸PCR定点突变效率.生物技术通报,2019,35(12):196-202.
肖娟,马梦琪,梁明星,贺如阳,陈华波.部分扩增与双片段连接相结合制作长基因定点突变[J].生物工程学报,2020,36(06):1232-1240.
基金:湖北省高等学校优秀中青年科技创新团队计划(No.T201715);湖北文理学院大学生创新创业训练计划项目(No.X201910519062)资助.
分享:
微核是细胞质中被核膜包裹的圆形或椭圆形的类核物质,是由于基因组DNA受到损伤导致整条染色体或染色体片段在有丝分裂后期不能进入子细胞而形成,反映了细胞染色体的不稳定性,与肿瘤和多种代谢性疾病的发生、发展和预后相关。微核的形成除了受到环境有害因素如致癌物、放射性物质等的影响外,还与机体本身的特征如年龄、性别和生活方式等因素有关。
2024-05-20Smith-Magenis综合征(Smith-Magenis syndrome, SMS)(OMIM:182290)是一种复杂的疾病,其特征是智力障碍、睡眠障碍、颅面和骨骼异常、行为异常,以及言语和运动发育迟缓。该疾病的遗传方式为常染色体显性遗传,RAI1基因(OMIM:607642)被认为是致病的关键基因,约90%的患者可检测到包含RAI1基因的缺失,少数患者可检测到该基因的杂合变异。
2024-05-11常染色体三体的胚胎和胎儿流产风险较高,其中15三体占所有三体自然流产的7.6%,是自然流产中最常见的细胞遗传学异常之一。完全型15三体无生存能力,出生后会因严重畸形而过早死亡,关于15三体表型的报道多见于15三体嵌合体。减数分裂不分离导致的三体自救和胚胎有丝分裂不分离是15三体嵌合体形成的可能原因。
2024-03-29毛发是一种最常见、易存储、抗污染能力强的生物材料[1,2],含有多态性蛋白质、激素和DNA等,可以提供动物个体的生物学信息[3,4,5]。其中DNA所能够提供的遗传信息最为丰富,不仅用于物种鉴定,还可用来推断系统发育关系、分析种群遗传结构、追溯个体间的血缘关系等[6,7]。但是这些信息的挖掘潜力受限于DNA的质和量,DNA质量越低实验分析越困难。
2020-11-10目的基因导入并表达于真核细胞是确定目的基因生物学活性的必要方法之一,目前常用的目的基因导入方法有电穿孔、病毒介导转染和脂质体转染等[1]。其中,脂质体转染因操作简单且不需要特殊仪器设备而被广泛接受[2]。转染时,不管实际使用的目的基因如何,转染试剂说明书给出的方法都是相同的。
2020-07-07我们对T1代转基因阳性植株进行分子鉴定,鉴定结果进行统计分析后得到的CRISPR/Cas9基因编辑效率为3.7%~15.4%。但对T2代种子的脂肪酸组分进行分析,通过脂肪酸组分的变化得到的CRISPR/Cas9基因编辑效率为54.5%~74.1%。由此我们发现,通过分析脂肪酸组分变化来检测CRISPR/Cas9基因编辑突变体的方法漏检率更低,结果更准确,方法更具优越性。
2020-07-01α-L-鼠李糖苷酶在天然产物的转化应用中具有重大价值,从不同水平对其进行研究,可以为其在食品医药行业上的产业化应用提供理论基础。以可耐热生长的T.petrophila的α-L-鼠李糖苷酶为目标,对其氨基酸序列进行分析,发现其含有876个氨基酸残基,无信号肽序列,有糖基化位点和4个保守超家族结构域。
2020-07-01“后人类”话语产生于20世纪60年代,最初以艺术想象方式做绘画、影视、文学创作,同时又对所创造的作品予以艺术理论或文化社会学的解读;与其相伴随的另一种方式是理论预见,它通过对后人类社会现象的把握预测其走向和未来。然而,无论艺术想象方式还是理论预见方式,都为人类向后人类演进的进程所激励。
2020-07-011990年启动,耗时14年由6个国家合作完成的人类基因组计划细致地绘制了人类的基因图谱,提供了近30亿个碱基对和约2万~2.5万个蛋白质编码基因的信息[1,2].HGP的实施和完成不仅为生命科学研究提供了详细的遗传信息,而且也为基因组测序技术的发展带来了机遇,使其在随后的岁月中得到了迅猛的发展。
2020-07-01本文在此基础上制备以POSS为骨架的星型阳离子聚合物POSS-(PDMAEMA)8(缩写为PPD),在阳离子聚合物末端接枝梳状PEGMA引入双键,将CREDVW(Cys-ArgGlu-As-Val-Trp)多肽键接在PPD阳离子聚合物末端,最终制备得到POSS-(PDMAEMA)8-PPEGMA-CREDVW(缩写为PPD-CREDVW)阳离子聚合物.
2020-07-01我要评论
期刊名称:生命科学
期刊人气:1545
主管单位:中国科学院
主办单位:国家自然科学基金委员会生命科学部,中国科学院生命科学与生物技术局,中国科学院生命科学和医学学部,中国科学院上海生命科学研究院
出版地方:上海
专业分类:生物
国际刊号:1004-0374
国内刊号:31-1600/Q
邮发代号: 4-628
创刊时间:1988年
发行周期:月刊
期刊开本:大16开
见刊时间:一年半以上
影响因子:1.343
影响因子:1.227
影响因子:1.286
影响因子:0.000
影响因子:1.349
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!