摘要:磷脂酶C的β亚型(PLCβ)在突触传递和可塑性的调节中发挥着重要作用。东亚三角涡虫Dugesiajaponica作为首次出现三胚层的两侧对称动物,是研究发育和进化的重要模式生物。为了研究DjPLCβ4基因在东亚三角涡虫胚胎发育不同阶段的表达,通过RT-PCR和RACE技术克隆并验证了DjPLCβ4cDNA的功能与表达图谱。结果显示,DjPLCβ4基因全长3245bp,编码969个氨基酸。系统进化树显示,东亚三角涡虫与其他物种的PLCβ4亚型聚群,并位于两侧对称动物的基部,可能是PLCβ4的原始类型。通过整体原位杂交技术研究DjPLCβ4基因在胚胎中的时空表达,DjPLCβ4基因最开始表达于胚胎发育的第3阶段,阳性信号主要位于胚胎咽及胚带;随着发育,胚胎孵化出幼虫,DjPLCβ4基因主要表达于神经原基和中枢神经系统。综上所述,东亚三角涡虫DjPLCβ4基因参与胚胎神经原基的形成和分化。
加入收藏
哺乳动物中,磷脂酶C(PLC)根据序列同源性和结构域的位置,可分为β、γ和δ三大类,是一种存在于细胞膜上的关键酶。在大脑中,PLC-β家族的表达谱比较清楚,PLC-β1、β3和β4是最常见的酶型且有其独特的表达模式。PLC-β1在大脑皮层和海马中高表达,在小脑中表达较少(Rossetal.,1989);PLC-β4在小脑中表达最高,在大脑皮层和海马中的表达量极低,而PLC-β3在整个脑中的表达量都很低(Tanaka&Kondo,1994)。
PLCβ4基因的异常表达与癫痫、精神分裂症、亨廷顿病、抑郁症等脑部疾病相关(Yangetal.,2016)。研究结果表明,PLCβ4基因缺陷小鼠Musmusculus的视觉系统会出现功能障碍,PLCβ4在视杆外部的初始光层叠后的视觉处理中起到重要作用(Jiangetal.,1996)。PLCβ4基因突变小鼠表现出运动障碍和运动性共济失调的症状,尤其是后肢更严重(Kimetal.,1997)。PLCβ4还与生物钟功能相关,研究发现,在小鼠的肝脏中,PLCβ4基因和蛋白的表达受昼夜节律的调控,而不依赖于外部光周期(Kleinetal.,2008)。PLCβ4在睡眠-觉醒和体温节律中也发挥着重要的作用。
神经系统是后生动物中最复杂的器官系统之一。神经网络调节动物生理学和控制行为等方面。因此,了解神经系统如何在整个生命中发育、功能和重塑是一个有趣且具有挑战性的研究热点。与线虫或果蝇相比,涡虫因其强大再生能力而备受关注(Baguna,2012;Rink,2013)。此外,涡虫是拥有前脑部化(“大脑”)的最原始生物,这很可能代表人类大脑的祖先(Sarnat&Netsky,1985,2002)。东亚三角涡虫Dugesiajaponica属扁形动物门Platyhelminthes涡虫纲Turbellaria三肠目Tricladida(刘德增,1989),有2种繁殖方式:有性生殖和无性生殖。无性生殖是指涡虫本体受到外界或自身条件影响而断裂,并再生出完整个体。有性生殖会产生具有多个受精卵和外卵黄细胞组成的卵囊,胚胎在卵囊内发育,发育过程分为8个阶段(Yuanetal.,2010,2014;甄辉等,2016)。每个卵囊里含有1~10个处于不同发育阶段的受精卵,受精卵的周围充满了大量的外卵黄,其在卵囊中发育直至幼虫(Hartenstein&Ehlers,2000)。
为了研究PLCβ4在涡虫胚胎发育中的表达谱,本文通过RT-PCR和RACE技术克隆得到东亚三角涡虫PLCβ4基因,并利用整体原位杂交技术研究了其在涡虫胚胎发育中的时空表达图谱。
1、材料与方法
1.1实验材料
东亚三角涡虫胚胎采自山东省淄博市博山泉河头;成体为实验室培养单系,饲养在鲁山山泉水中。胚胎经DEPC水冲洗后,用解剖针扎破,4%多聚甲醛室温固定30min,30%、50%、75%甲醇梯度脱水,100%甲醇-20℃保存待用。实验前成体饥饿1周。胚胎每组实验样本量为8个,成体实验样本量为10条。PMD18-T载体为TaKaRa,EscherichiacoliDH5α为实验室保存。
1.2引物设计与PCR扩增
引物设计PLCβ4(F和R)(表1)和PCR步骤参照甄辉等(2016)。利用TRIZOL试剂提取涡虫总RNA,测量RNA浓度,利用Fermentas反转录试剂盒合成cDNA模板。由上海Sangon公司合成。以涡虫cDNA为模版,利用F和R引物进行PCR扩增,反应程序:94℃预变性5min;94℃变性50s,57℃退火60s,72℃延伸60s,共30个循环;72℃延伸10min。PCR扩增结束后,利用OMEGA胶回收试剂盒回收。将纯化回收的PCR产物连接到PMD18-T载体上送上海博尚生物技术有限公司测序。
1.3通过RACE技术获得PLCβ4全长
根据测序获得的部分PLCβ4序列设计RACE5’和3’的引物(表1)。RACE-PCR反应程序参照甄辉等(2016)。5’-和3’-cDNA模板利用ClontechB DSMARTAM RACE cDNA Amplification Kit反转录试剂盒反转录。RACE-PCR的循环程序如下:94℃预变性2min;94℃变性30s,60℃退火30s,72℃延伸45s,共35个循环;72℃延伸2min。PCR扩增产物通过胶回收纯化,并连接到PMD18-T载体上送上海博尚生物技术有限公司测序。
1.4生物信息学分析
生物信息学分析的软件和步骤参照甄辉等(2016)。序列用DNAtools进行蛋白质序列翻译,在NCBI中BLASTP(http://blast.ncbi.nlm.nih.gov),寻找存在的同源基因。用DNASTAR中的MegAlign分析同源蛋白质序列之间的相似性,利用MEGA7的最大似然法对其进行进化树分析,重复1000次。
1.5DIG-LabelingRNA探针合成
根据测序获得的基因序列设计引物(表1)。首先,利用PCR获得3’端有T7启动子的PCR产物,沉降纯化回收后连接到PMD18-T载体上送上海博尚生物技术有限公司测序。DIG-LabelingRNA探针合成体系:模板(3’端带有T7启动子的PCR产物1mg),T7RNApolymerase,DIG-LabelingRNAMix(Roche)和RNAseInhibitor,37℃孵育12h。
表1实验引物设计
1.6原位杂交
原位杂交参照甄辉等(2016)和Zhen等(2019)的方法。胚胎固定时经DEPC水冲洗后,用5mm解剖针扎破,幼虫经5%NAC处理5min,4%多聚甲醛室温固定30min,30%、50%、75%甲醇梯度脱水,100%甲醇-20℃保存待用或直接用于原位杂交。原位杂交时甲醇(75%、50%、30%)梯度复水;10μg·mL-1ProteinaseK室温下消化10min;4%多聚甲醛室温固定30min;0.1mol·L-1三乙醇胺加0.25%乙酸酐进行乙酰化;56℃预杂交2h;杂交时加入1μg·mL-1RNA探针,56℃杂交16h。杂交后洗涤,10%马血清溶液封闭2h;anti-Digantibody(1∶2000),4℃孵育过夜;室温条件下,马来酸缓冲液清洗8次,APBuffer孵育10min;加入5-bromo-4-chloro-3-indolylphosphate和nitroblue tetrazolium(BCIP/NBT;Roche)显色液后,放置暗处显色;在合适信噪比时终止反应,用NikonAZ100体视显微镜进行拍照。
2、结果
2.1基因克隆
利用RT-PCR引物扩增的PCR产物大小为1084bp;利用5’-RACE引物GSP-1、GSP-2扩增的PCR产物大小分别为1246bp和963bp,利用3’-RACE引物GSP3扩增的PCR产物大小为418bp(图1:A)。将测序获得序列比对拼接,结果显示,从东亚三角涡虫中克隆得到的DjPLCβ4基因全长为3245bp,最大开放阅读框为2907bp,编码969个氨基酸组成的蛋白质,该蛋白质的预测分子量约为110.55kDa,5’非翻译区为42bp,3’非翻译区为296bp,5’端有1个起始密码子,3’非翻译区包含多聚腺苷酸化信号位点和poly(A)尾,由此认为,克隆得到的cDNA为全长序列,GenBank登录号详见表2。
图1DjPLCβ4基因获得的引物位置(A)和结构域(B)
表2本研究所用物种PLCβ4基因序列的GenBank登录号
2.2生物信息学分析
在NCBIBLASTP分析获得的氨基酸序列,该氨基酸包含PH结构域、EF-hand结构域、X+Y结构域、C2结构域和DUF结构域(图1:B)。相似性结果显示,与其他物种PLCβ4蛋白相似性在36%以上,与选取的脊椎动物PLCβ4蛋白相似性为55%。选择6种代表性物种,将不同物种的PLCβ4蛋白的不同结构域用MegAlign比对,结果表明,DjPLCβ4是一个非常保守的蛋白质,与其他物种的PH结构域、EF-hand结构域、X+Y结构域、C2结构域的相似性很高。为了进一步验证DjPLCβ4的进化地位,选择了7种代表性物种的PLC[β(1~4)、γ(1,2)、δ(1,3,4)、η(1,2)、ζ1、ε1]蛋白氨基酸序列,MEGA7构建的进化树显示,DjPLCβ4与其他物种PLCβ4聚为一支,并位于两侧对称动物的基部(红色方框),符合进化地位,进一步验证了DjPLCβ4是PLCβ4的一员(图2)。因此,将其命名为DjPLCβ4。
图2MAGE7(最大似然法)构建DjPLCβ4的系统进化树(bootstrap=1000)
2.3原位杂交
为探索DjPLCβ4基因在涡虫胚胎发育中的表达图谱,利用原位杂交技术检测DjPLCβ4基因在不同胚胎时期的表达图谱。结果显示,第1、2阶段(胚胎卵裂期)没有检测到DjPLCβ4基因的阳性信号(图3:B);第3阶段,胚胎开始分化,形成胚胎咽,外卵黄被胚胎咽吸收,随着外卵黄不断变大,合胞体被挤到最外层,并形成含有胚胎细胞的胚带,DjPLCβ4基因主要表达于胚胎咽和胚带(图3:C)。第4阶段,外卵黄继续被胚胎咽吸入,胚胎体积达到最大并开始变形,DjPLCβ4基因主要表达于神经原基、胚胎咽及胚带(图3:D);第5阶段,合胞体出现解体,胚胎逐渐变为扁圆形,细胞和组织开始分化形成表皮细胞和肌肉细胞,DjPLCβ4基因主要表达于咽原基和神经原基(图3:E);第6阶段,胚胎不断变大,大量细胞出现分化,腹神经更加明显,且第一个器官咽形成,DjPLCβ4基因主要表达于咽和神经系统,且头部信号较明显(图3:F);第7、8阶段,胚胎大脑形成,神经系统进一步成熟,胚胎边缘逐渐形成原始的神经系统,DjPLCβ4基因主要表达于神经系统(图3:G)。
随后,胚胎发育成熟,孵化出幼虫,1周后长成成体。利用整体原位杂交技术检测到DjPLCβ4基因主要表达于成体的脑和咽(图4:B)。
图3DjPLCβ4基因在东亚三角涡虫胚胎发育中的表达
图4DjPLCβ4基因在东亚三角涡虫整体中的表达图式
3、讨论
磷脂酰肌醇代谢是一个重要的细胞内信号系统,参与多种细胞功能,包括激素分泌、神经递质传递、生长因子信号、细胞膜运输和细胞骨架调节等。磷脂酰肌醇特异性磷脂酶C是该系统中的关键酶,水解磷脂酰肌醇4,5-二磷酸[PI(4,5)P2]生成肌醇1,4,5-三磷酸(IP3)和二酰甘油(DAG)2个第二信使,以响应激素、神经递质、生长因子激活受体和其他分子。从哺乳动物中克隆出13种PLC同工酶,根据结构和调控激活机制可分为以下6类:PLC-δ(1,3,4)、PLC-β(1~4)、PLC-γ(1,2)、PLC-ε、PLC-ζ、PLC-η(1,2)。每一种同工酶都由亚型特异的保守结构域组成。所有的PLC同工酶都含有催化的X+Y结构域以及各种调控结构域,包括C2结构域、EF-hand结构域和PH结构域。在东亚三角涡虫中获得DjPLCβ4基因,利用NCBIBLASTP(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)对编码的氨基酸序列进行分析,发现该氨基酸包含PH结构域、EF-hand结构域、X+Y结构域和C2结构域,这与上述文献结果相同。进化分析结果显示,DjPLCβ4与选取物种的PLCβ4聚为一支,并位于两侧对称动物的基部,符合进化地位,进一步证明DjPLCβ4是PLCβ4的一员。
PLCs在器官形成和胚胎发育中发挥着重要的作用。研究表明,PLCβ1、β3、γ1和γ2在小鼠卵细胞中表达;在精子中检测到β1~3、γ1,2、δ2、δ4和ζ的表达。受精和卵子激活是胚胎发育的第一步,研究发现,PLC-δ4和PLC-γ与这一现象密切相关,PLC-δ4基因敲除小鼠表现出雄性不育,且体外受精实验发现,这些动物的精子仅能够诱导较少卵子的激活,并且不会引起钙振荡(Fukamietal.,2001)。由于钙振荡增加是启动卵子激活的关键,而PLC-δ4是精子中诱导钙振荡和卵子激活的重要基因(Wassarman,1999)。PLC-β的分布非常广,在神经系统、感觉器官及腺体的表达量显著高于其他位置。成熟小鼠卵细胞在mRNA水平上表达2种PLCβ同工酶β1和β3(Dupontetal.,1996)。PLCβ3缺陷的胚胎在第4细胞期前死亡,表明该酶参与卵子激活或早期胚胎发育(Wangetal.,1998)。在成年小鼠中,PLC-β4在蒲肯野细胞、丘脑、中隔及眼睛的视杆细胞有高表达(Watanabeetal.,1998)。小脑皮层中层的蒲肯野细胞中,PLC-β4高表达,敲除后小鼠会出现运动失调(Kimetal.,1997)。而小鼠丘脑皮质PLCβ4缺失则会导致其失神发作(Cheongetal.,2009)。PLCβ4与小脑发育过程中的纤维突触清除有关(Kanoetal.,1998)。PLCβ4在大脑发育和发挥正常功能中起着不可替代的作用。研究还发现,丘脑mGluR1-PLCβ4通路是控制睡眠结构的关键(Hongetal.,2016)。在涡虫胚胎发育的第3阶段检测到DjPLCβ4基因在胚胎咽出现信号,之后在分化出的神经原基和咽原基中也检测到阳性信号,随着胚胎腹部神经加厚并丰富,阳性信号增多,且头部更加明显。DjPLCβ4基因主要集中在成体的脑和咽。因此,DjPLCβ4基因在涡虫胚胎发育时主要参与涡虫神经原基的形成和分化。
参考文献:
[1]刘德增.1989.中国的淡水(三肠目)涡虫[J].动物学杂志,24(6):38-43.
[2]甄辉,吴素格,鹿晴晴,等.2016.东亚三角涡虫DjWnt5a克隆及在胚胎不同发育阶段中的表达[J].中国生物化学与分子生物学报,32(2):199-206.
甄辉,赵博生.东亚三角涡虫DjPLCβ4基因克隆及在胚胎发育中的组织特异性表达[J].四川动物,2020,39(03):249-257.
基金:国家自然科学基金项目(31970430).
分享:
微核是细胞质中被核膜包裹的圆形或椭圆形的类核物质,是由于基因组DNA受到损伤导致整条染色体或染色体片段在有丝分裂后期不能进入子细胞而形成,反映了细胞染色体的不稳定性,与肿瘤和多种代谢性疾病的发生、发展和预后相关。微核的形成除了受到环境有害因素如致癌物、放射性物质等的影响外,还与机体本身的特征如年龄、性别和生活方式等因素有关。
2024-05-20Smith-Magenis综合征(Smith-Magenis syndrome, SMS)(OMIM:182290)是一种复杂的疾病,其特征是智力障碍、睡眠障碍、颅面和骨骼异常、行为异常,以及言语和运动发育迟缓。该疾病的遗传方式为常染色体显性遗传,RAI1基因(OMIM:607642)被认为是致病的关键基因,约90%的患者可检测到包含RAI1基因的缺失,少数患者可检测到该基因的杂合变异。
2024-05-11常染色体三体的胚胎和胎儿流产风险较高,其中15三体占所有三体自然流产的7.6%,是自然流产中最常见的细胞遗传学异常之一。完全型15三体无生存能力,出生后会因严重畸形而过早死亡,关于15三体表型的报道多见于15三体嵌合体。减数分裂不分离导致的三体自救和胚胎有丝分裂不分离是15三体嵌合体形成的可能原因。
2024-03-29毛发是一种最常见、易存储、抗污染能力强的生物材料[1,2],含有多态性蛋白质、激素和DNA等,可以提供动物个体的生物学信息[3,4,5]。其中DNA所能够提供的遗传信息最为丰富,不仅用于物种鉴定,还可用来推断系统发育关系、分析种群遗传结构、追溯个体间的血缘关系等[6,7]。但是这些信息的挖掘潜力受限于DNA的质和量,DNA质量越低实验分析越困难。
2020-11-10目的基因导入并表达于真核细胞是确定目的基因生物学活性的必要方法之一,目前常用的目的基因导入方法有电穿孔、病毒介导转染和脂质体转染等[1]。其中,脂质体转染因操作简单且不需要特殊仪器设备而被广泛接受[2]。转染时,不管实际使用的目的基因如何,转染试剂说明书给出的方法都是相同的。
2020-07-07我们对T1代转基因阳性植株进行分子鉴定,鉴定结果进行统计分析后得到的CRISPR/Cas9基因编辑效率为3.7%~15.4%。但对T2代种子的脂肪酸组分进行分析,通过脂肪酸组分的变化得到的CRISPR/Cas9基因编辑效率为54.5%~74.1%。由此我们发现,通过分析脂肪酸组分变化来检测CRISPR/Cas9基因编辑突变体的方法漏检率更低,结果更准确,方法更具优越性。
2020-07-01α-L-鼠李糖苷酶在天然产物的转化应用中具有重大价值,从不同水平对其进行研究,可以为其在食品医药行业上的产业化应用提供理论基础。以可耐热生长的T.petrophila的α-L-鼠李糖苷酶为目标,对其氨基酸序列进行分析,发现其含有876个氨基酸残基,无信号肽序列,有糖基化位点和4个保守超家族结构域。
2020-07-01“后人类”话语产生于20世纪60年代,最初以艺术想象方式做绘画、影视、文学创作,同时又对所创造的作品予以艺术理论或文化社会学的解读;与其相伴随的另一种方式是理论预见,它通过对后人类社会现象的把握预测其走向和未来。然而,无论艺术想象方式还是理论预见方式,都为人类向后人类演进的进程所激励。
2020-07-011990年启动,耗时14年由6个国家合作完成的人类基因组计划细致地绘制了人类的基因图谱,提供了近30亿个碱基对和约2万~2.5万个蛋白质编码基因的信息[1,2].HGP的实施和完成不仅为生命科学研究提供了详细的遗传信息,而且也为基因组测序技术的发展带来了机遇,使其在随后的岁月中得到了迅猛的发展。
2020-07-01本文在此基础上制备以POSS为骨架的星型阳离子聚合物POSS-(PDMAEMA)8(缩写为PPD),在阳离子聚合物末端接枝梳状PEGMA引入双键,将CREDVW(Cys-ArgGlu-As-Val-Trp)多肽键接在PPD阳离子聚合物末端,最终制备得到POSS-(PDMAEMA)8-PPEGMA-CREDVW(缩写为PPD-CREDVW)阳离子聚合物.
2020-07-01人气:5015
人气:4337
人气:3702
人气:3340
人气:2627
我要评论
期刊名称:动物学杂志
期刊人气:2314
主管单位:中国科学院
主办单位:中国科学院动物研究所,中国动物学会
出版地方:北京
专业分类:生物
国际刊号: 0250-3263
国内刊号:11-1830/Q
邮发代号:2-422
创刊时间:1957年
发行周期:双月刊
期刊开本:大16开
见刊时间:一年半以上
影响因子:1.343
影响因子:1.227
影响因子:1.286
影响因子:0.000
影响因子:1.349
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!