摘要:作者独辟蹊径对抛物线及双曲线进行了探索分析,得到了两个奇妙无比的结果,现共诸同好,希望对读者有所启发。
加入收藏
笔者最近对双曲线与抛物线做了研究,得到了两个新颖有趣的结果,现论述如下,与读者共享.
定理:
分别是双曲线的两个焦点,E是与
焦点化相应的准线与其对称轴的交点,经过E和
耳作两条平行直线,分别与双曲线相交于两点和M,N两点,双曲线的通径长为
,离心率为e,则
证明:假设双曲线方程为
是左焦点,其坐标是(-c,0),E是左准线与X轴的交点
因为经过E和的直线平行,
可以假设其斜率为K,则可知道直线的方程为
,联立方程
消去Y得
所以
由焦半径公式
所以
因为直线MTV经过
,所以直线MN的方程是
,联立方程
消去Y得
,所以
故由弦长公式得
化简为:
由④除以②可得
帮求得
将⑤代入②可得
因为双曲线的通径
故⑥去分母后可以化简为
例1分别是双曲
的两个焦点,E是与2焦点相应的准线与其对称轴的交点,经过E和2作两条平行直线,分别与双曲线相交于A,B两点和M,N两点,若
求IMNI的大小。
定理:F是抛物线的焦点,E是抛物线的准线与其对称轴的交点,经过E和F作两条平行直线A,B分别与抛物线相交于两点和M,N两点,则
证明:类同定理1证法易得,过程略.
例2F是抛物线
的焦点,£是抛物线的准线与其对称轴的交点,经过£和F作两条平行直线,分别与抛物线相交于A"两点和M,N两点,若\BF\+\AF\=4,则IMN\的大小为_________.
解析:由定理2很快得出IMNI=4.
参考文献:
[1]玉云化.椭圆的一个新性质[J]-河北理科教学研究.2009.6.
尹杰杰,刘雨昀.双曲线与抛物线的一个新性质[J].中学数学研究,2019(10):29-30.
分享:
优化问题具有非常重要的实际应用价值,备受研究者们关注。二层规划因其上、下层决策变量互相影响制约、结构非凸、非处处可微等几何特性使其求解难度较大。越来越多的人们把智能优化算法应用于二层规划寻优问题中,从而产生了很多新型算法。在诸多智能优化算法中,蚁群算法(AntColonyAlgorithm)因其具有自组织和正反馈等特点,在解决优化问题时备受研究者青睐。
2020-12-021、空间解析几何教学改革初探与实践2、基于k细分等几何层次模型的多重网格算法研究3、Tesla阀性能的影响因素及其优化分析4、笛卡尔关于科学研究统一性的数学构想5、AZ31镁合金双曲率方杯拉深成形的有限元分析及工艺优化6、惯性定理的几何意义7、探讨矩阵行列式几何意义的应用
2020-08-11双曲抛物面在几何学中有其特殊的性质,它是由直线运动所产生的曲面;同一族的任意两条直母线异面;它的任意一条直线都与另一族直线所有的直线相交;对双曲抛物面上的任意一点,两族直母线中各有一条直母线经过该点,正是因为这些特性使得它在实际生活方面有着广泛的应用。
2020-07-13教师在中职立体几何教学中运用信息化工具,能更好地帮助学生掌握立体几何问题的解题思路,有效提升学生的空间想象能力和抽象思维能力。在使用信息化工具时,教师需要细致地处理好各个教学环节中信息化工具的定位、使用时机、流程细节等,还要及时反思和优化。作为新时代的教师,把信息技术的理念和工具积极且合理地加入到立体几何的课堂教学中。
2020-07-09随着计算机编程教学的不断深入,教师在实际的教学过程中往往会遇到很多的问题,学生对于几何编程都非常感兴趣,却不知道从何入手,学生们反复强调实际学习效果不佳,主要原因在于几何编程操作方法简单,但是随着几何图形设计任务的增加,对于学生的计算机思维能力的要求也逐步提升,因此要求教师在这个过程中应当关注学生的分解以及递归思维能力的培养。
2020-07-09子空间是点集拓扑学中的重要概念,它既可以拓展拓扑学的研究范围,也可以帮助我们建立不同拓扑空间之间的联系,而且很多重要的概念,比如,连通子集、紧致子集等都是通过它来定义的,所以掌握好这一概念对后续的学习十分关键.笔者在十余年的教学实践中发现,虽然子空间的定义和相关性质在内容上比较简单,但是这并不代表它可以很容易地灵活运用.
2020-07-09椭圆与圆很相似。就像把画圆的工具称作圆规一样,画椭圆的工具称作椭圆规。 椭圆规的构造:由有十字形滑槽的底板和旋杆组成(如图1)。在十字形滑槽上各装有一个活动滑标。滑标下面有一根旋杆。此旋杆与纵横两个滑标连成一体。移动滑标,其下面的旋杆能作360°旋动,画出符合椭圆方程的椭圆。
2020-07-09通过培养学生的几何空间思维能力和逻辑推理能力,提高学生学习课程的基本方法,掌握科研创新的方法和能力。笔者结合最新的课程改革基本理念和多年的教学实践,总结经验,潜心思考,对现今出现的课堂效果较差、学习兴趣逐渐减弱等现象进行了深入探讨和研究,提出了以下几点浅薄的看法。
2020-07-09勾股定理也称毕达哥拉斯(Pythagoras)定理,是数学中非常重要的定理之一。毕达哥拉斯是公元前6世纪希腊著名的数学家和哲学家,在西方,他被普遍认为是该定理最早的证明者,因此勾股定理就以他的名字命名。然而早在公元前1700年,古巴比伦人就发现已这一定理,无独有偶,最迟公元前1105年,我国的商高便能利用一般的“弦图”来证明这一定理。
2020-07-09相对微分几何是关于仿射空间中超曲面的一种理论,包含等积几何和中心仿射几何为其特例.设x:MA是从n维连通定向流形M到n+1维仿射空间A的局部强凸浸入.设{Y,y}是x(M)的相对法化.3-形式C是最重要的几何不变量之一.Simon3-形式C˜定义为3-形式C的无迹部分。
2020-07-09人气:6027
人气:3169
人气:3023
人气:2628
人气:2542
我要评论
期刊名称:数学的实践与认识
期刊人气:2783
主管单位:中国科学院
主办单位:中国科学院数学与系统科学研究院
出版地方:北京
专业分类:科学
国际刊号:1000-0984
国内刊号:11-2018/O1
邮发代号:2-809
创刊时间:1971年
发行周期:半月刊
期刊开本:16开
见刊时间:1年以上
影响因子:0.553
影响因子:0.322
影响因子:0.352
影响因子:0.000
影响因子:0.000
您的论文已提交,我们会尽快联系您,请耐心等待!
你的密码已发送到您的邮箱,请查看!